
OpenADR 2.0b Profile Specification - 1 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

OpenADR 2.0

Profile Specification
B Profile

Updated 07-01-2013
Revision Number: 1.0

Document Status: Final Specification
Document Number: 20120912-1

Copyright© OpenADR Alliance® (2013). All rights Reserved. The information within this document
is the property of the OpenADR Alliance® and its use and disclosure are restricted.

Contact: Editors: Technical Director
OpenADR Alliance:

OpenADR Alliance
275 Tennant Avenue, Suite 202
Morgan Hill, CA 95037
help@openadr.org

Ulrich Herberg, Fujitsu
 <uherberg@us.fujitsu.com>
Jim Zuber, QualityLogic
 <JimZuber@qualitylogic.com>

Rolf Bienert
 <rolf@openadr.org>

Please send general questions and comments about the specification to comments@openadr.org

OpenADR 2.0b Profile Specification - 2 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

Legal Notice

© 2013 OpenADR Alliance.

The OpenADR Alliance hereby grants the party downloading this technical specification (“You” and the
“Specification” respectively) a non-exclusive, non-transferable, royalty free, nonsublicenseable limited
copyright license to download the Specification, exclusively for the purpose of internal evaluation. You un-
derstand and expressly acknowledge that this limited copyright license is revocable at any time for any
reason, or no reason. You also agree not to modify the Specification in any way and agree not to make,
have made, or in any way participate in the making of derivative works thereof, other than as a necessary
result of reviewing and providing feedback to the Specification. The OpenADR Alliance expressly reserves
all rights not granted pursuant to this limited copyright license. OpenADR Alliance Members can use the
spec as per the Alliance Intellectual Property Policy.

You also acknowledge that the Specification may be superseded by the publication of a revised or amend-
ed Specification (“Future Specification”), at which time the limited copyright license granted herein will au-
tomatically be revoked. You are therefore cautioned against relying on the content of this Specification.

EXCEPT FOR THE LIMITED COPYRIGHT LICENSE GRANTED ABOVE, THE OPENADR ALLIANCE
DOES NOT GRANT, EITHER EXPRESSLY OR IMPLIEDLY, A LICENSE TO ANY INTELLECTUAL PROP-
ERTY IT, OR ANY THIRD PARTIES, OWN OR CONTROL. ANY IMPLEMENTATION OF THE SPECIFICA-
TION WILL CONSTITUTE COPYRIGHT AND/OR PATENT INFRINGEMENT. Title to the copyright in the
Specification will at all times remain with the OpenADR Alliance. The example companies, organizations,
products, domain names, e-mail addresses, logos, people, places, and events depicted therein are ficti-
tious. No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

THE SPECIFICATION IS PROVIDED “AS IS,” AND THE OPENADR ALLIANCE (AS WELL AS ANY THIRD
PARTIES THAT HAVE CONTRIBUTED TO THE SPECIFICATION INCLUDING WITHOUT LIMITATION
MEMBERS OF THE OPENADR ALLIANCE) MAKES NO REPRESENTATIONS OR WARRANTIES, EX-
PRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FIT-
NESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF
THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF
SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS
OR OTHER RIGHTS.

NEITHER THE OPENADR ALLIANCE NOR ANY THIRD PARTY WILL BE LIABLE FOR ANY DIRECT, IN-
DIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO
ANY USE OF THE SPECIFICATION.

The OpenADR Alliance is willing to receive input, suggestions and other feedback (“Feedback”) on the
Specification. By providing such Feedback to the OpenADR Alliance, you grant to the OpenADR Alliance
and all its Members a non-exclusive, non-transferable, worldwide, perpetual, irrevocable, royalty-free copy-
right license to copy, publish, license, modify, sublicense or otherwise distribute and exploit your Feedback
for any purpose. Likewise, if incorporation of your Feedback would cause an implementation of the Speci-
fication or a Future Specification to necessarily infringe a patent or patent application that you own or con-
trol, you hereby commit to grant to all implementers of such Specification or Future Specification an irrevo-
cable, worldwide, sublicenseable, royalty free license under such patent or patent application to make,
have made, use, sell, offer for sale, import and export products or services that implement such Specifica-
tion or Future Specification. You warrant that (a) to the best of your knowledge you have the right to pro-
vide this Feedback, and if you are providing Feedback on behalf of a company, you have the rights to pro-
vide Feedback on behalf of your company; (b) the Feedback is not confidential to you and does not violate
the copyright or trade secret interests of another; and (c) to the best of your knowledge, use of the Feed-
back would not cause an implementation of the Specification or a Future Specification to necessarily in-
fringe any third-party patent or patent application known to you. You also acknowledge that the OpenADR
Alliance is not required to incorporate your Feedback into any version of the Specification or a Future
Specification.

OpenADR 2.0b Profile Specification - 3 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

CONTENTS

1! Scope .. 10!
2! Normative References .. 12!
3! Non-Normative References ... 14!
4! Terms and Definitions ... 15!
5! Abbreviations ... 16!
6! Overview .. 17!

! Node and Device Types ... 18!6.1
! Energy Interoperation Services .. 19!6.2
! Feature Sets .. 19!6.3
! Assumptions .. 20!6.4

7! OpenADR 2.0 Feature Set Profiles .. 21!
! Differences between OpenADR 2.0a and OpenADR 2.0b 21!7.1
! OpenADR 2.0b Feature Set Profile ... 22!7.2

! Supported Services .. 22!7.2.1
! Report Only VENs .. 22!7.2.2
! Transport Mechanism ... 23!7.2.3
! Security ... 23!7.2.4

8! OpenADR 2.0b Services and Data Models Extensions ... 24!
! OpenADR 2.0b EiEvent Service ... 24!8.1

! Data Model .. 28!8.1.1
! UML Models ... 28!8.1.2

! Differences between OpenADR2.0a and 2.0b Event Mechanism 30!8.2
! Event Targets and Resources ... 30!8.2.1
! OpenADR 2.0b Signal Definitions ... 30!8.2.2

! OpenADR 2.0b Report Service ... 34!8.3
! Introduction .. 34!8.3.1
! Core Reporting Operations ... 35!8.3.2

! OpenADR 2.0b Registration Service ... 42!8.4
! Service Operations ... 42!8.4.1
! Registration Information ... 45!8.4.2

! OpenADR 2.0b EiOpt Service ... 47!8.5
! Service Operations ... 47!8.5.1
! Detail Requirements ... 48!8.5.2

! OpenADR Poll ... 50!8.6
! Application Error Codes ... 53!8.7

9! Transport Protocol .. 54!
! Simple HTTP ... 54!9.1

! PUSH and PULL implementation .. 54!9.1.1
! Service Endpoint URIs ... 54!9.1.2
! HTTP Methods ... 55!9.1.3

OpenADR 2.0b Profile Specification - 4 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

! Failure Conditions .. 55!9.1.4
! HTTP Response Codes .. 55!9.1.5
! Message Timeouts ... 56!9.1.6
! Message Retry / Quiesce Behavior ... 56!9.1.7
! PULL Timing .. 56!9.1.8
! HTTP Headers ... 56!9.1.9

! Transport Specific Security .. 57!9.2
! XMPP .. 57!9.3

! PUSH and PULL implementation .. 58!9.3.1
! Service Endpoints .. 58!9.3.2
! Service Execution .. 58!9.3.3
! Implementation of XMPP Features for OpenADR 58!9.3.4
! Security Considerations .. 62!9.3.5

10! OpenADR 2.0 Security ... 63!
! Architecture and Certificate Types ... 63!10.1
! Certificate Authorities .. 64!10.2
! Certificate Revocation ... 64!10.3
! TLS and Cipher Suites .. 64!10.4
! System Registration Process ... 65!10.5

! Certificate Fingerprints .. 65!10.5.1
! Implementing XML Signatures for OpenADR 2.0 Message Payloads 65!10.6

! Introduction to XML Signature .. 65!10.6.1
! Components of XML Signatures ... 66!10.6.2
! Creating XML Signatures ... 66!10.6.3
! Verifying XML Signatures .. 68!10.6.4

11! Conformance ... 69!
! OpenADR 2.0 conformance statement ... 69!11.1
! OpenADR 2.0b Profile Conformance Rules .. 69!11.2

! EiEvent – from 2.0a ... 69!11.2.1
! EiEvent – Additional 2.0b Conformance Rules .. 79!11.2.2
! EiOpt .. 81!11.2.3
! EiReport .. 85!11.2.4
! EiRegisterParty ... 93!11.2.5
! General Conformance Rules .. 95!11.2.6

! Cardinality .. 101!11.3
! Services used from OASIS Energy Interoperation V1.0 Standard 101!11.4
! Services not currently used from OASIS EI .. 102!11.5

Annex A – Detailed Report Description ... 103!
Annex B B Profile Extensions ... 104!

B.1! Overview .. 104!
B.2! Report Extension .. 104!
B.3! Signal Extensions ... 104!
B.4! Other Extensions .. 104!

OpenADR 2.0b Profile Specification - 5 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

Annex C – oadrPoll Scenarios .. 105!
C.1! Overview .. 105!
C.2! Scenarios ... 105!

OpenADR 2.0b Profile Specification - 6 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

OPEN AUTOMATED DEMAND RESPONSE

OpenADR 2.0 Profile Specification

FOREWORD

The development of the Open Automated Demand Response Communications Specification,
also called OpenADR, began in 2002 following the California electricity crisis. The California En-
ergy Commission Public Interest Energy Research Program funded an OpenADR research pro-
gram through the Demand Response Research Center (DRRC) at Lawrence Berkeley National
Laboratory (LBNL). OpenADR development began in 2002 to support California’s energy policy
objectives to move toward dynamic pricing to improve the economics and reliability of the electric
grid. Initial field tests focused on automating a number of event-based DR utility programs for
commercial and industrial (C&I) customers. The DRCC research set out to determine if today’s
communications and information technologies could be used to automate Demand Response (DR)
operations using standardized electricity price and reliability signals. This research, development,
and deployment have led to commercial adoption of OpenADR. Today, utilities and governments
worldwide are using OpenADR to manage the growing demand for electricity and peak capacity
of the electric systems. This low cost communications infrastructure is used to improve the relia-
bility, repeatability, robustness, and cost-effectiveness of DR.

OpenADR is a fundamental element of U.S. Smart Grid interoperability standards being devel-
oped to improve optimization between electric supply and demand. OpenADR is designed to fa-
cilitate automated DR actions at the customer location, whether it involves electric load shedding
or shifting. OpenADR is also designed to provide continuous dynamic price signals such as hour-
ly day-ahead or day-of real time pricing. OpenADR has been field tested and deployed in a num-
ber of DR programs in U.S and worldwide. While the scope of OpenADR focuses on signals for
DR events and prices, significant work focuses on DR strategies and techniques to automate DR
within facilities. OpenADR interacts with facility control systems that are pre-programmed to take
action based on a DR signal, enabling a response to a DR event or a price to be fully automated,
with no manual intervention.

The DRCC OpenADR 1.0 specification was donated to the Organization of Structured Infor-
mation Standards (OASIS) to create a national standard for OpenADR. The OASIS’ Energy In-
teroperation (EI) Technical Committee (TC) developed a standard to describe “an information
model and a communication model to enable collaborative and transactive use of energy, service
definitions consistent with the OASIS SOA Reference Model [SOA-RM], and XML vocabularies
for the interoperable and standard exchange of dynamic price signals, reliability signals, emer-
gency signals, communication of market participation information such as bids, load predictability
and generation information.” Considering that the goal of OASIS EI TC was more than DR and
Distributed Energy Resources (DER), the EI TC created profiles within the EI Version 1.0 stand-
ard for specific applications within the Smart Grid. The OpenADR Alliance used the EI OpenADR
profile as the basis for the OpenADR 2.0 Profile Specification defined in this document. Open-
ADR 2.0 defines profiles for DR and Distributed Energy Resources (DER), while keeping in mind
the requirements of the diverse market and stakeholder needs.

OpenADR 2.0b Profile Specification - 7 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

INTRODUCTION

Development of the Demand Response (DR) market has resulted in a transition from manual DR
to OpenADR in Automated DR (Auto-DR) programs. As of 2013, over 250 MW was enrolled in
California commercial and industrial customers Auto-DR programs using OpenADR 1.0.1 DR is
defined as “…action taken to reduce electricity demand in response to price, monetary incentives,
or utility directives so as to maintain reliable electric service or avoid high electricity prices.”2

OpenADR 1.0 was developed to support Auto-DR programs and California’s energy policy objec-
tives to move toward dynamic pricing to improve the economics and reliability of the electric grid.
The recent developments have expanded the use of OpenADR to meet diverse market needs
such as ancillary services (Fast DR), dynamic prices, intermittent renewable resources, supple-
ment grid-scale storage, electric vehicles, and load as generation. For example, with real-time
price information, an automated client within the customer facility can be designed to continuous-
ly monitor these prices and translate this information into continuous automated control and re-
sponse strategies. This rationale is a fundamental element of the United States (U.S.) Smart Grid
interoperability standards, which are developed to improve dynamic optimization of electric sup-
ply and demand.

OpenADR Communications have the following defining features:

● Continuous, Secure, and Reliable - Provides continuous, secure, and reliable two-way

communications infrastructures where the end points at the end-use site receive and
acknowledge the receipt of DR signals from the energy service providers.

● Translation - Translates DR event information to continuous Internet signals to facilitate
DR automation. These signals are designed to interoperate with energy management and
control systems, lighting, or other end-use controls.

● Automation - Receipt of the external signal is designed to initiate automation through the
use of pre-programmed demand response strategies determined and controlled by the
end-use participant.

● Opt-Out - Provides opt-out or override function to any participants for a DR event if the
event comes at a time when changes in end-use services are not desirable.

● Complete Data Model - Describes a rich data model and architecture to communicate
price, reliability, and other DR activation signals.

● Scalable Architecture - Provides scalable communications architecture to different
forms of DR programs, end-use buildings, and dynamic pricing.

● Open Standards - Open standards-based technology such as Internet Protocol (IP) and
web services form the basis of the communications model.

OpenADR is a communications data model, along with transport and security mechanisms, which
facilitate information exchange between two end-points, the electricity service provider and the
customer. It is not a protocol that specifies “bit-structures” as some communications protocols do,
but instead relies upon existing open standards such as eXtensible Mark-up Language (XML)

1 Piette, Mary Ann, Girish Ghatikar, Sila Kiliccote, Ed Koch, Dan Hennage, Peter Palensky, and Charles McParland.

2009. Open Automated Demand Response Communications Specification (Version 1.0). California Energy Com-
mission, PIER Program. CEC‐500‐2009‐063.

2 U.S. Federal Energy Regulatory Commission (FERC), 2007 Assessment of Demand Response and Advanced Meter-
ing, Staff Report, available: http://www.ferc.gov/legal/staff-reports/09-07-demand-response.pdf

OpenADR 2.0b Profile Specification - 8 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

and Internet Protocol (IP) as the framework for exchanging DR signals. In some references the
term “system,” “technology,” or “service” is used to refer to the features of OpenADR.

OpenADR is designed to facilitate automation of DR actions at the customer location, whether it
involves electric load shedding or load shifting. We are often asked if the communications data
model can be used for continuous operations. The answer is yes. Many emergency or reliability
DR events occur at specific times when the electric grid is strained. The OpenADR communica-
tions are designed to coordinate such signals with facility control systems (commercial, industrial,
and residential). OpenADR is also designed to provide continuous dynamic price signals such as
hourly day-ahead or day-of real time pricing. With such price information an automated client can
be configured to continuously monitor these prices and translate this information into continuous
automated control and response strategies within a facility. Several reports present the history of
OpenADR 1.0 research.3 This OpenADR 2.0 profile specification covers the signaling data mod-
els for price and reliability signals to both wholesale and retail markets in the U.S.

OpenADR provides the following benefits:

● Open Specification–Provides a standardized DR communications and signaling infra-

structure using open, non-proprietary, industry-approved data models that can be imple-
mented for both dynamic prices and DR emergency or reliability events.

● Flexibility–Provides open communications interfaces and protocols that are flexible, plat-
form-independent, interoperable, and transparent to end-to-end technologies and soft-
ware systems.

● Innovation and Interoperability–Encourages open innovation and interoperability, and
allows controls and communications within a facility or enterprise to build on existing
strategies to reduce technology operation and maintenance costs, stranded assets, and
obsolesce in technology.

● Ease of Integration–Facilitates integration of common Energy Management and Control
Systems (EMCS), centralized lighting, and other end-use devices that can receive Inter-
net signals (such as XML).

● Supports Wide Range of Information Complexity – Can express the information in the
DR signals in a variety of ways to allows for systems ranging from simple end devices
(e.g., thermostats) to sophisticated intermediaries (e.g., aggregators) to receive the DR
information that is best suited for its operations.

● Remote Access– Facilitates opt-out or override functions for participants to manage
standardized DR-related operation modes to DR strategies and control systems.

The OpenADR Alliance is the primary authority for the development and adoption of OpenADR,
leveraging the OpenADR 1.0 activities and OASIS Energy Interoperation (EI) Technical Commit-

3 These reports are available at http://drrc.lbl.gov/drrc-pubsall.html:

Piette, M.A., S. Kiliccote, G. Ghatikar, Design and Implementation of an Open, Interoperable Automated Demand Re-
sponse Infrastructure, Proceedings of the Grid-Interop Forum, October 2007, LBNL-63665.

Koch, E., M.A. Piette, Architecture Concepts and Technical Issues for an Open, Interoperable Automated Demand Re-
sponse Infrastructure. Proceedings of the Grid-Interop Forum, October 2007. LBNL-63664.

Piette, M.A, D. Watson, N. Motegi, S. Kiliccote Automated Critical Peak Pricing Field Tests: 2006 Pilot Program De-
scription and Results, August, 2007. LBNL-62218.

Motegi, N., M.A. Piette, D.S. Watson, S. Kiliccote, P. Xu. Introduction to Commercial Building Control Strategies and
Techniques for Demand Response, May 2007. LBNL-59975.

OpenADR 2.0b Profile Specification - 9 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

tee’s Version 1.0 standard.4 The OpenADR profile within OASIS EI Version 1.0 standard is the
basis for the OpenADR 2.0 profile specification and is referenced as appropriate in this docu-
ment.

4 Energy Interoperation OASIS Committee Specification, Energy Interoperation Version 1.0, December 2011.

http://www.oasis-open.org/committees/download.php/44364/energyinterop-v1.0-csprd03.zip

OpenADR 2.0b Profile Specification - 10 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

1 Scope

The OpenADR 2.0 profile specification is a flexible data model to facilitate common information
exchange between electricity service providers, aggregators, and end users. The concept of an
open specification is intended to allow anyone to implement the two-way signaling systems,
providing the servers, which publish information (Virtual Top Nodes or VTNs) to the automated
clients, which subscribe the information (Virtual End Nodes, or VENs).

This OpenADR 2.0 profile specification covers the signaling data models between VTN and VEN
(or VTN/VEN pairs) and does include information related to specific DR electric reduction or
shifting strategies, which are taken at the facility. In particular, OpenADR 2.0 supports the follow-
ing services from OASIS EI Version 1.0 standard or subset thereof. Extensions to these services
are included to meet the DR stakeholder and market requirements:

1. Registration (EiRegisterParty): Register is used to identify entities such as VEN’s and
parties. This is necessary in advance of an actor interacting with other parties in various
roles such as VEN, VTN, tenderer, and so forth.

2. Enrollment (EiEnroll): Used to enroll a Resource for participation in DR programs. This
establishes a relationship between two actors as a basis for further interactions. (Planned
for future releases)

3. Market Contexts (EiMarketContext): Used to discover program rules, standard reports,
etc. Market contexts are used to express market information that rarely changes, and
thereafter need not be communicated with each message. (Planned for future releases)

4. Event (EiEvent): The core DR event functions and information models for price-
responsive DR. This service is used to call for performance under a transaction. The
service parameters and event information distinguish different types of events. Event
types include reliability events, emergency events, and more – and events MAY be de-
fined for other actions under a transaction.

5. Quote or Dynamic Prices (EiQuote): EiDistributeQuote for distributing complex dynamic
prices such as block and tier tariff communication. These are sometimes referred to as
price signals; such signals are indications of a possible tender price – they are not them-
selves actionable. Such services can be used to implement the functionality for energy
market interactions or transactional energy. (Planned for future releases)

6. Reporting or Feedback (EiReport): The ability to set periodic or one-time information on
the state of a Resource (response).

7. Availability (EiAvail): Constraints on the availability of Resources. This information is
set by the end node and indicates when an event may or may not be accepted and exe-
cuted by the VEN with respect to a Market Context. Knowing the Availability and Opt in-
formation for its VENs improves the ability of the VTN to estimate response to an event or
request. (Planned for future releases)

8. Opt or Override (EiOpt): Overrides the EiAvail; addresses short-term changes in availa-
bility to create and communicate Opt-in and Opt-out schedules from the VEN to the VTN.

These OpenADR 2.0 services in this specification provide information that is pertinent to DR,
pricing, and DER communication requirements. These services make no assumption on specific
DR electric load control strategies within the resource or market-specific contractual or business
agreements between electricity service providers and their customers.

OpenADR uses an application-level data model, which is independent of transport mechanisms.
For the purposes of interoperability, OpenADR 2.0 provides basic transport mechanisms and
their relevant interaction patterns (e.g., PUSH information vs. PULL information) to address dif-
ferent stakeholder needs.

OpenADR 2.0 specifies the necessary level of security that is essential to meet the U.S. Cyber
Security requirements for such purposes as data confidentiality, integrity, authentication and
message-level security. Such security requirements are essential for non-repudiation and to miti-
gate any resulting Cyber Security risks.

OpenADR 2.0b Profile Specification - 11 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

OpenADR 2.0 provides a clear set of mandatory and optional attributes within each of the ser-
vices to meet the broader interoperability, testing and certification requirements, while creating
feature-sets with different product profiles to address today’s market needs as well as future re-
quirements that are closely aligned to meet OpenADR goals and national interoperability re-
quirements for Smart Grid standards.

The different product certification levels for OpenADR include OpenADR 2.0a, OpenADR 2.0b,
and OpenADR 2.0b “Energy Reporting only” VENs (depicted in Figure 1). VTN certification for
2.0a will end with publication of this document, and existing implementations of 2.0a VTNs must
upgrade to the OpenADR2.0b standard. For this reason, Figure 1 has no column for 2.0a VTN.
2.0b VTNs must support 2.0a VENs (and therefore comply with the OpenADR2.0a standard).
VENs can be certified using the 2.0a, the 2.0b, and a 2.0b “Energy reporting only” profile. An
OpenADR 2.0c or new market-specific profiles may be specified in the future. This profile speci-
fication describes OpenADR 2.0b. For the final 2.0a features, please refer to the respective
specification, which is available on the OpenADR Alliance’s website – http://www.openadr.org/.

Figure 1 OpenADR 2.0 Certification Levels

Services(and(Functions
Support

EiEvent
Limited'Profile'(2.0a'specification) M M NA NA

Full'Profile M NA M NA

EiOpt
Full'Profile M NA M NA

EiReport
Full'Profile M NA M* M*

EiRegisterParty
Full'Profile M NA M M

Transport(Protocols
Simple'HTTP M M O=1 O=1

XMPP M O O=1 O=1

Security(Levels
Standard M M M M

High O NA O O
M(=(Mandatory NA(=(Not(available(for(profile
O(=(Optional *(Optional(features(available
O=1(=(Optional,(but(at(least(one(of(them(must(be(supported

B

VEN

B A

B
(Energy
Reporting
only)

VTN

OpenADR 2.0b Profile Specification - 12 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

2 Normative References

- [OpenADR 2.0 PICS] – Source: OpenADR website, http://www.openadr.org

- [OpenADR 2.0 Certificate Policy] – Source: OpenADR website, http://www.openadr.org

- [OASIS EI 1.0] Energy Interoperation OASIS Committee Specification 02, Energy In-
teroperation Version 1.0, http://docs.oasis-
open.org/energyinterop/ei/v1.0/cs02/energyinterop-v1.0-cs02.html, February 2012.

- [OASIS EMIX 1.0] EMIX OASIS Committee Specification 02, Energy Market Information
Exchange 1.0, http://docs.oasis-open.org/emix/emix/v1.0/cs02/emix-v1.0-cs02.html, Jan-
uary 2012.

- [OASIS WS-Calendar] WS-Calendar OASIS Committee Specification 1.0, WS-Calendar,
http://docs.oasis-open.org/ws-calendar/ws-calendar-spec/v1.0/cs01/ws-calendar-spec-
v1.0-cs01.html, July 2011.

- [RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels,
http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

- [RFC2246] T. Dierks, C. Allen, The TLS Protocol Version 1.0,

http://www.ietf.org/rfc/rfc2246.txt, IETF RFC 2246, January 1999.

- [RFC2616] R. Fielding et. al., Hypertext Transfer Protocol -- HTTP/1.1,

http://www.ietf.org/rfc/rfc2616.txt, IETF RFC 2616, June 1999.

- [RFC3275] D. Eastlake, J. Reagle, D. Solo, (Extensible Markup Language) XML-
Signature Syntax and Processing, http://www.ietf.org/rfc/rfc3275.txt, IETF RFC 3275,
March 2002.

- [RFC3986] T. Berners-Lee et. al., Uniform Resource Identifier (URI): Generic Syntax,

http://www.ietf.org/rfc/rfc3986.txt, IETF RFC 3986, June 1999.

- [RFC4346] T. Dierks, E. Rescorla, The Transport Layer Security (TLS) Protocol Version

1.1, http://www.ietf.org/rfc/rfc4346.txt, IETF RFC 4346, April 2006.

- [RFC5246] T. Dierks, E. Rescorla, The Transport Layer Security (TLS) Protocol Version

1.2, http://www.ietf.org/rfc/rfc5246.txt, IETF RFC 5246, April 2008.

- [RFC6120] P. Saint-Andre, Extensible Messaging and Presence Protocol (XMPP): Core
Version 1.0, http://www.ietf.org/rfc/rfc6120.txt, IETF RFC 6120, March 2011.

- [RFC6121] P. Saint-Andre, Extensible Messaging and Presence Protocol (XMPP): In-

stant Messaging and Presence, http://www.ietf.org/rfc/rfc6121.txt, IETF RFC 6121, March
2011.

- [RFC6122] P. Saint-Andre, Extensible Messaging and Presence Protocol (XMPP): Ad-
dress Format, http://www.ietf.org/rfc/rfc6122.txt, IETF RFC 6122, March 2011.

- [SOA-RM] SOA-RM OASIS Standard, OASIS Reference Model for Service Oriented Ar-

chitecture 1.0, http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.html, October 2006.

OpenADR 2.0b Profile Specification - 13 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

- [XEP-0030] Joe Hildebrand et. al., XEP-0030: Service Discovery,

http://xmpp.org/extensions/xep-0030.html, June 2006.

OpenADR 2.0b Profile Specification - 14 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

3 Non-Normative References

- OpenADR 2.0a Profile Specification

- UCA OpenSG OpenADR security profile

- IRC and NAESB requirements/use-cases

- NIST Special Publication 800-131A

- NAESB REQ.21 Energy Services Provider Interface (ESPI), Version 1.0 October
2011(Green Button)

OpenADR 2.0b Profile Specification - 15 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

4 Terms and Definitions

The OpenADR Alliance: The OpenADR Alliance is comprised of industry stakeholders that are
interested in fostering the deployment of low-cost price- and reliability-based demand response
communication protocol by facilitating and accelerating the development and adoption of Open-
ADR standards and compliance with those standards. These include de facto standards based
on specifications published by LBNL in April 2009, as well as Smart Grid-related standards
emerging from OASIS, UCAIug, NAESB, and IRC.

OpenADR 2.0 Profile Specification: The OpenADR 2.0a and 2.0b Profile Specifications provide
specific implementation related information in order to build an OpenADR enabled device or sys-
tem. Developers shall use the Profile Specification in conjunction with the schemas, sample pay-
loads, PICS and test plans.

OASIS Energy Interoperation (EI): Energy Interoperation standard describes information and
communication model to coordinate energy supply, transmission, distribution, and use, including
power and ancillary services, between any two parties, such as energy suppliers and customers,
markets and service providers, in any of the domains defined in the Smart Grid. The EI 1.0
standard was used as a basis for OpenADR 2.0 Profile Specification.

Demand Response: A mechanism to manage customer load demand in response to supply con-
ditions, such as prices or availability signals.

Slow DR: Demand Response where the signals are sent significantly before the events are
called, such as day-ahead.

Fast DR: Fast Demand Response or Fast DR refers to programs that require a (much) faster
than usual response time. While typical peak shaving DR programs have minutes, if not hours or
days, of lead-time, these programs have lead times of seconds (e.g., 4 second response time)
used for load balancing and frequency stabilization (e.g., ancillary services and regulation ser-
vices)

PUSH/PULL operations: OpenADR 2.0 can be used in either PULL mode (VEN pulling infor-
mation from VTN) or in a PUSH mode in the simple HTTP transport. The XMPP transport uses a
PUSH model, although VENs can still make requests of the VEN, excluding the use of oadrPoll.

Simple HTTP: Simple HTTP in OpenADR 2.0 (a/b) refers to an HTTP implementation that uses
HTTP POST over TLS to propagate OpenADR payloads.

The upper-case key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”,
“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “NOT RECOMMENDED”, “MAY”, and “OP-
TIONAL” in this document are to be interpreted as described in [RFC2119].

OpenADR 2.0b Profile Specification - 16 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

5 Abbreviations

AutoDR: Automated Demand Response

DER: Distributed Energy Resources

DR: Demand Response

DRRC: Demand Response Research Center

DUT: Device Under Test

EI: Energy Interoperation

HTTP: Hyper Text Transfer Protocol

IRC: ISO/RTO Council

ISO: Independent Systems Operator

JID: Jabber Identifiers

LBNL: Lawrence Berkeley National Laboratory

NAESB: North American Energy Standards Board

OASIS: Organization of Structured Information Standards

OpenADR: Open Automated Demand Response

PICS: Protocol Implementation Conformance Statement

RTO: Regional Transmission Operators

SASL: Simple Authentication and Security Layer

Simple HTTP: Limited REST transport protocol

SOAP: Simple Object Access Protocol

TC: Technical Committee

UCAIug: Utilities Communications Architecture International Users Group

VEN: Virtual End Node

VTN: Virtual Top Node

XMPP: XML Messaging and Presence Protocol

OpenADR 2.0b Profile Specification - 17 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

6 Overview

This section gives an overview of the message exchanges, the roles, and actors supported within
OpenADR 2.0 Profile Specifications. It contains the following elements, used to develop test and
certification framework for Smart Grid and customer systems interoperability:

1. A set of data models derived from the OASIS Energy Interoperation 1.0 standard.
2. A set of services for performing various functions and operations for the exchange of the

data models, also derived from the OASIS Energy Interoperation 1.0 standard.
3. A set transport mechanisms for implementing the services. The transport mechanisms re-

ly upon standard-based IP communications such as HTTP and XML Messaging and
Presence Protocol (XMPP).

4. A set of security mechanisms for securing each of the transport mechanisms.
5. OpenADR 2.0 Schemas (separate document)

The OASIS Energy Interoperation (EI) 1.0 standard describes the coordination of energy sup-
plies, transmission, distribution, and usage. However, as shown in Figure 2, the features re-
quired within the OpenADR 2.0 Profile Specifications are a subset of this Energy Interoperation
1.0 standard. The reason for this development is twofold – 1) By having a strict and clear subset
of features to support OpenADR, devices can be clear about what features they must support in
order to participate in the OpenADR ecosystem; 2) by being a referenced subset, devices can
validate against the Energy Interoperation 1.0 standard, and participate in that ecosystem as well.
These requirements are critical to maintain interoperability and reference the original standard.

Figure 2 Relationship between OASIS Energy Interoperation 1.0 Standard and OpenADR 2.0 Profiles

The above Figure 2 shows the relative relationship between the complete data model and ser-
vices features of the Energy Interoperability 1.0 standard and OpenADR 2.0 profiles. The dia-
gram also shows how the different profile subsets of OpenADR 2.0 relate to the complete Open-
ADR 2.0 feature set.

Message exchanges in OpenADR 2.0 support services related to communicating information
about Demand Response events. Networks of OpenADR nodes must be able to query for active
or pending events, register themselves, schedule events, and send reports. OpenADR nodes
must also be able to refine and update previously sent information. For instance, an OpenADR
node reporting DR events to nodes downstream must be able to cancel a previously scheduled
event if this becomes necessary.

OpenADR 2.0b Profile Specification - 18 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

Nodes in these networks are divided into two groups: nodes that publish and transmit information
about events to other nodes (e.g., utilities), and nodes that receive the communications respond
to that information (e.g., end users). The upstream nodes that publish information about upcom-
ing events are called Virtual Top Nodes (VTNs); the downstream nodes that receive this infor-
mation are called Virtual End Nodes (VENs).
These nodes may communicate using a variety of protocols. They may communicate using
HTTP in either PUSH mode (where the VTN initiates communication) or in a PULL mode (the
VEN requests information from the VTN to begin a series of message exchanges). The
VTNs/VENs may also communicate over other transport mechanisms such as XML Messaging
and Presence Protocol (XMPP).

The profiles support end devices with varying degree of capabilities. The profile levels are 2.0a,
for simple devices, and 2.0b, for more sophisticated devices. An OpenADR 2.0c profile may be
specified in the future. Profile 2.0b VEN devices support a sub-profile referred to as Report Only.
Each profile has a defined set of optional and mandatory functionality. In general, this function-
ality is only optional for VEN, as VTN must support all functionality for a given profile in order to
maintain interoperability.

 Node and Device Types 6.1
Following the notion from the OASIS Energy Interoperability 1.0 standard, OpenADR 2.0 uses
the definitions of Virtual Top Nodes (VTNs) and Virtual End Nodes (VENs). For any interaction
between actors using OpenADR 2.0 to communicate, one actor is designated the Virtual Top
Node and the remainder are the Virtual End Nodes. All communications are between a VTN and
one or more VEN’s. There is no peer-to-peer communication in OpenADR 2.0, i.e., VTNs do not
communicate directly with other VTNs and likewise VENs do not communicate directly with other
VENs.

Generally in an interaction, the VTN acts as the server, providing information to the VEN, which
themselves respond to the information. For instance, a VTN would be the entity to announce a
DR event; VENs hear about DR events and respond. The response may be to reduce power to
some devices. The response could also be to propagate the signal further downstream to other
VEN’s. In this case, the VEN would become the VTN for the new interaction (as depicted in Fig-
ure 3).

For the purpose of device development, the OpenADR Alliance always tests the interface be-
tween a VTN and a VEN, where either node can be the Device Under Test (DUT). Intelligence
build into the systems not related to the OpenADR 2.0 message exchange is not part of the
OpenADR Alliance testing program.

Virtual Top Node (VTN): An entity that is responsible for communicating grid conditions (e.g.,
prices, reliability events, etc.) to other entities (i.e., VENs) that control demand side resources.
The VTN is able to communicate with both the Grid and the VEN devices or systems in its do-
main. A VTN may take the role of a VEN interacting with another VTN.

Virtual End Node (VEN): The VEN has operational control of a set of resources and/or processes
and is able to control the electrical energy demand of these in response to an understood set of
Smart Grid messages (i.e., DR signals). The VEN may be either a producer or consumer of en-
ergy. The VEN is able to communicate (2-way) with a VTN receiving and transmitting Smart Grid
messages that relay grid situations, conditions, or events. A VEN may take the role of a VTN in
other interactions.

Although within any interaction, one actor is designated the VTN and the remainder are VENs
(moreover, most interactions have exactly one VTN and one VEN), sets of actors can be ar-
ranged in any hierarchy, by allowing actors to act as VENs for some interactions and VTNs for
others.

OpenADR 2.0b Profile Specification - 19 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

Figure 3 Possible relationships of VTN and VEN

As illustrated in Figure 3, any combination of VTN and VEN is possible through a utility/ISO (ser-
vice provider or server) to sites (customers). Also, as shown above, systems can function as a
VEN to a VTN in a higher layer of the hierarchy and as a VTN to subordinate VENs. In either of
these architectural scenarios, an operation can be initiated by the VTN to a VEN (PUSH pattern)
or a VEN can request it from a VTN (PULL pattern). The exchanged events in either direction
can be independent from each other and the OpenADR Alliance does not define how the nodes
react to the information. In nodes, which support both the VTN and VEN interfaces (e.g., aggre-
gators) there are no specifications or constraints on how messages arriving at the VEN interface
are coupled or translated into any subsequent messages that may be sent from the VTN inter-
face and vice versa. They are treated as completely independent interfaces and both will be
evaluated and tested independently to assure adherence to the profile specification and interop-
erability. A specific deployment scenario depends on an agreement between the utility/ISO and
the participating sites.

 Energy Interoperation Services 6.2
The OASIS Energy Interoperation specification encompasses a number of services for collabora-
tive and transactive use of energy of which only 4 services are applicable for OpenADR (in the
current B profile). OpenADR 2.0 uses a profiled subset of the Energy Interoperation services tai-
lored to meet the OpenADR needs, but still conforming to the Energy Interoperation Specification.

These services are EiRegisterParty, EiEvent, EiReport, and EiOpt. For further information on
these services, consult Section 7.

 Feature Sets 6.3
The OpenADR 2.0 specification has been designed to support a variety of end-use devices, from
simple to more sophisticated. Accordingly, not all devices need to support all OpenADR capabili-
ties. For example, although OpenADR describes how VTNs may report lists of active and pend-
ing future events, a simple residential programmable thermostat may only need information

OpenADR 2.0b Profile Specification - 20 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

about the next pending event. In order to prevent onerous requirements on all devices, Open-
ADR currently defines two feature sets, each of which represent a subset of OpenADR function-
ality. The feature sets are 2.0a (or simply A), and 2.0b (or simply B), and possibly a future speci-
fication of a 2.0c profile. The purpose of the profiles is to create a range of functionality that can
be supported by devices as simple as a thermostat (profile A) to more complex IT based systems
such as might be used by aggregators (profile B). Additional feature sets can be established to
accommodate additional market requirements.

 Assumptions 6.4
This is a list of operating assumptions regarding correct functional behavior between VENs and
VTNs:

• Both the VTN and VEN have a reasonably accurate awareness of the current time. How
that is accomplished is device and/or deployment specific.

OpenADR 2.0b Profile Specification - 21 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

7 OpenADR 2.0 Feature Set Profiles

The OpenADR Alliance has defined several feature sets to accommodate a variety of different
devices for varying applications. Each Feature Set Profile describes the required services to be
implemented as well as the accompanying operations and attributes. Please refer to the Open-
ADR 2.0 Protocol Implementation Conformance Statement ([OpenADR 2.0 PICS] – refer to sepa-
rate document for alliance members only) for more information regarding the required services.
Additional profiles will be added if required by the market participants.

The OpenADR 2.0 services discussed in the Feature Set Profiles can be found in section 8. All
services are subsets of the OASIS Energy Interoperation Specification and validate individually
with the relevant schemas.

This document outlines the OpenADR 2.0b profile. Any following profiles will have their own
sets of documents and will follow. Summary information for these profiles is described in this
document.

 Differences between OpenADR 2.0a and OpenADR 2.0b 7.1
The only service supported by the A profile is the EiEvent service. The EiEvent object is simpli-
fied in the A profile with the following constraints:

• Only one signal per event is allowed and that signal must be the OpenADR well-known
signal SIMPLE.

• There is a limited event targeting with only venID, groupID, resourceID, and partyID sup-
ported. (eiEvent:eiTarget).

• Targeting at the signal level with device classes is not supported (eiEventSig-
nal:eiTarget:endDeviceAsset).

• Baselines are not supported (eiEvent:eiEventSignals:eiEventBaseline).

• modificationDateTime and modificationReason are not supported.

• The endpoint URL for simple HTTP in 2.0b is:
https://<hostname>(:port)/(prefix/)OpenADR2/Simple/2.0b/<service>
(note the additional “2.0b/” prefix compared to the 2.0a specification).

B profile VTNs must be able to interoperate with both A and B VENs. B VENs may optionally
support the A profile, but are not required to. If a B profile VEN also supports the A profile and
communicates with an A profile VTN, it must constrain its behavior as follows:

• Use only the EiEvent service
• Do not send oadrPoll
• Root Payload Element schemaVersion attribute must not be sent as part of any payload
• oadrResponse:venID must not be sent as part of the oadrResponse payload

With publication of this document, no 2.0a VTNs will be certified any more, and after a grace pe-
riod, 2.0a VTN implementations must update to the 2.0b standard. This means that a certified
VTN must support both 2.0a and 2.0b VEN implementations.

OpenADR 2.0b Profile Specification - 22 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

When a B profile VTN communicates with an A profile VEN, it must constrain its behavior as fol-
lows:

• Use only the EiEvent service
• Events must contain no more than one EiEventSignal
• Event signalName must be “SIMPLE” as defined in the A profile conformance rule 7
• The event signalPayload values must limited to 0,1,2,3 as defined in A conformance rule

9
• The following optional B profile eiEvent schema elements must not be sent as part of the

oadrDistributeEvent payload to the VEN:
o eiEvent:eventDescriptor:modificationDateTime
o eiEvent:eventDescriptor:modificationReason
o eiEvent:eiTarget:aggregatedPnode
o eiEvent:eiTarget:endDeviceAsset
o eiEvent:eiTarget:meterAsset
o eiEvent:eiTarget:pnode
o eiEvent:eiTarget:serviceArea
o eiEvent:eiTarget:serviceDeliveryPoint
o eiEvent:eiTarget:serviceLocation
o eiEvent:eiTarget:transport Interface
o eiEvent:eiEventSignals:eiEventSignal:eiTarget
o eiEvent:eiEventSignals:eiBaseline
o eiEvent:eiEventSignals:eiEventSignal:itemBase Substitution Group

• Root Payload Element schemaVersion attribute must not be sent as part of any payload
• The currentValue eiEvent element must be included in the oadrDistributeEvent payload

The OpenADR 2.0b profile adds the functionality excluded above for the 2.0a profile.

In addition, the 2.0b profile optionally supports XML signatures, which requires a different XML
root element for each payload (refer to Section 10.6). With the changes to the B schema to sup-
port XML signatures, the changes required for A and B devices to interoperate will be much more
extensive and may not be practical using a common code base. The B devices would need to
strip the root oadrPayload, Signature, and oadrSignedObject elements from every payload.

 OpenADR 2.0b Feature Set Profile 7.2
The OpenADR 2.0b Feature Set was developed for advanced demand response systems and
markets (e.g., wholesale and retail DR markets). It includes an extended EiEvent Service as well
as several additional services usable in Demand Response programs and for ancillary services.

 Supported Services 7.2.1
a) EiEvent Service

b) EiReport Service

c) EiRegisterParty Service

d) EiOpt Service

 Report Only VENs 7.2.2
Some devices, such as meters, do not have the ability to shed load. However, these types of de-
vices can provide valuable reporting information to the VTN. The B profile has a sub-profile for
VENs called Report Only, which includes support for the following services:

a) EiReport Service

OpenADR 2.0b Profile Specification - 23 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

b) EiRegisterParty Service

 Transport Mechanism 7.2.3
Supported transport mechanisms are as follows. The mechanisms are described in section 9.

a) HTTP is mandatory for VTNs; VENs must either support HTTP or XMPP

b) XMPP is mandatory for VTNs; VENs must either support HTTP or XMPP

 Security 7.2.4
Supported security details are outlined in sections 9 and 10. The following security levels apply
to OpenADR 2.0b.

a) Standard Security – mandatory

b) High Security – optional

OpenADR 2.0b Profile Specification - 24 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

8 OpenADR 2.0b Services and Data Models Extensions

 OpenADR 2.0b EiEvent Service 8.1
Events are generated by the VTN and sent to the VEN using the oadrDistributeEvent payload
containing one or more events described by the oadrEvent element. Some events require a re-
sponse and others do not as indicated by the oadrResponseRequired element in the event de-
scription. If a response is required, the VEN acknowledges its opt-in or out-out disposition by re-
sponding with an oadrCreatedEvent payload containing eventResponse elements matching each
oadrEvent. If no response is required, the VEN must not reply with oadrCreatedEvents (or oad-
rCreateOpt) payloads for this event.

Either a PUSH or PULL interaction pattern may be used. For push, the VTN will deliver events to
the VEN using an oadrDistributeEvent payload. In PULL mode, the oadrDistributeEvent will be
sent from the VTN to the VEN as response to an oadrPoll (refer to section 8.6). In addition to pe-
riodically sending oadrPoll, a VEN may also send one-time oadrRequestEvent payloads to the
VTN in order to acquire events from the VTN. Note that 2.0A VENs will use oadrRequestEvent
for periodic pulling of events instead of oadrPoll. If an application level response is required, the
VEN asynchronously sends an oadrCreatedEvent back to the VTN in a second message. These
sequences are illustrated in Figure 4. Note that in simpleHTTP PUSH mode, the VEN’s response
to oadrDistributeEvent is a transport level acknowledgement if required (in the case of HTTP a
200 response code, in XMPP an empty iq stanza).

Figure 4 EiEvent PUSH Pattern

For the PULL case the VEN requests events by sending an oadrPoll to the VTN (see section 8.6).
The VTN responds with an oadrDistributeEvent. From this point the VEN response is exactly the
same as in the PUSH interaction. These sequences are illustrated in Figure 5.

EiEvent Push

VTN

oadrDistributeEvent may be pushed
from VTN to VEN when events are
created or modified.

VEN

oadrCreatedEvent is called according
to the same rules as the pull scenario
after receiving an
oadrDistributeEvent from the VTN.

oadrDistributeEvent

http 200

oadrCreatedEvent

oadrResponse

OpenADR 2.0b Profile Specification - 25 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

Figure 5 EiEvent PULL Pattern

The details of how these interactions are performed within the context of a specific transport
mechanism are covered in Section 9.

When an event requires a response, an initial oadrCreatedEvent is always sent from the VEN to
the VTN. If a given program allows a VEN to later change its opt-state during an event it may do
so by issuing subsequent oadrCreatedEvent (or oadrCreateOpt) message containing the new
state for a given event. Detailed descriptions of VTN and VEN event processing are given in the
following paragraphs.

Note that for both PUSH and PULL operations, an oadrDistributeEvent payload will always con-
tain all events applicable to the VEN it is communicating with.

Events are conveyed in the oadrDistributeEvent payload using one or more oadrEvent elements.
The oadrDistributeEvent payload has the following components:

• A requestID to uniquely identify this request and any contained events.
• A vtnID identifying the VTN sending the request.
• Zero or more oadrEvent elements.

The requestID uniquely identifies the request and any contained events. Its value is set by the
VTN using whatever scheme they desire, including using the same value in every request if its
use is not needed by the VTN. The receiving VEN must use this requestID in the oadrCre-
atedEvent event responses.

oadrEvent Description

oadrEvent elements describe individual events, signal values, and time periods that apply to sig-
nals. Each oadrEvent has an eiEvent element containing detailed event information and an oad-
rResponseRequired element that controls whether a VEN must respond with an oadrCre-
atedEvent.

EiEvent Pull

VTN
oadrPoll is periodically sent from the
VEN to the VTN. The VTN may reply
with an oadrDistributeEvent
containing new or modified events.
For one-time requests,
oadrRequestEvent is used instead of
oadrPoll.

VEN

If a response is required, the VEN
responds to the event with an
oadrCreatedEvent payload with its
optIn and optOut state and may
subsequently change its state with
another oadrCreatedEvent or with an
oadrCreateOpt.

oadrPoll

oadrDistributeEvent

oadrCreatedEvent

oadrResponse

Periodic poll

OpenADR 2.0b Profile Specification - 26 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

The responseRequired field indicates how the VEN must respond to contained events. A value of
“always” indicates that the VEN must reply to each event whether or not the event state (eventID,
modificationNumber) has changed. A value of “never” implies a “broadcast” event and the VEN
must not send any responses in this case.

The eiEvent eventDescriptor has the following fields:

• eventID – a unique ID for this event. The ID is unique within the context of a VTN.
• modificationNumber – A sequence that starts at zero and is incremented by 1 each time

the VTN modifies the event.
• modificationDateTime – The time the event has been modified (only in 2.0b payloads)
• modificationReason – The reason why the event has been modified (only in 2.0b pay-

loads)
• priority – An indication of the event priority with 0 being no priority
• marketContext – Identifies a particular program or application defined grouping that per-

tains to an event.
• createdDateTime – The time the payload containing the event was created. Note that

payloads are not necessarily created each time they are transmitted as they may be buff-
ered and only recreated if the event is modified. Any change of the payload of the event
requires an update of createdDateTime.

• eventStatus – The status of the event, indicating if the event is “near”, “far”, “active” or
“canceled”.

• testEvent – If not false, indicates this is a test event.
• vtnComment – Arbitrary comment provided by the VTN.

A single eiActivePeriod defines the start time and duration of the event. The start time is defined
by an ISO 8601 time descriptor and an ISO 8601 duration string specifies the duration. Note that
RFC 5545 (iCalendar) does not support the representation of years and months in the duration
string that is otherwise similar to the one specified in ISO 8601. OpenADR 2.0 implementations
are required to support the ISO 8601 representation (including support for fractional seconds).

The event signals that get applied over the entire active period are defined in an eiEventSignals
element. This element contains one or more eiEventSignal elements (for OpenADR 2.0a at most
one), each with a sequence of durations, the sum of which must equal the full duration of the ac-
tive period. Each signal element contains a signalType such as level or price. The signalPayload
contains the value of the signal according to table Table 1 (for the B profile), and relative values
of “normal”, “moderate”, “high”, or “special” (for the A profile) for each duration.

Figure 6 depicts the different time periods of an event. EIv1.0 specifies the following elements as:

Ramp Up Period:

Period at the beginning of the Active Interval expressed as a Duration, during which a
VEN moves from its former state to its requested state. If negative, then the Ramp Up
occurs within the bounds of the Active Interval, i.e., it starts at the same moment as the
Active Interval. If there is no Ramp Up Period, then all other rules are processed as if
there were a Ramp Up Period of zero length.

Recovery Period:

Period at the end of the Active Interval expressed as a Duration during which the effect of
the response may be reversed while the system returns to its base state. For example, a
system that reduces energy use during an Event by raising the air temperature may use
additional energy during the recovery period while cooling the air to the normal setting. If

OpenADR 2.0b Profile Specification - 27 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

negative, then the Recovery Period occurs within the bounds of the Active Interval, i.e., it
ends at the same moment as does the Active Interval.

Figure 6 Time intervals of an event

The EiTarget may be used to provide information to explicitly specify the entities that apply to
events. The B profile also supports signal specific EiTargets. An EiTarget may contain one or
more targets such as venIDs, groupIDs, resourceIDs, or partyIDs (many others available in the B
profile). These may be used, for example, when a VEN is acting as an aggregator and has multi-
ple resources behind it. Exactly how these IDs are handled is beyond the scope of this specifica-
tion and must be dealt with by provisioning at the VEN and VTN. If the EiTarget element is empty,
the VEN must assume that it is the primary and only resource targeted by the events.

oadrCreatedEvent Description

When one or more received events require a response, the VEN creates and populates an oad-
rCreatedEvent element and posts it to the VTN. The eiResponse element contains an application
level responseCode and responseDescription and a requestID. An eiResponses element con-
tains one or more eventResponse elements corresponding to each event. These are matched to
specific events using the qualifiedEventID, which contains an eventID and modificationNumber.
The optType may have a value of “optIn” or “optOut” to indicate the VENs disposition for a given
event.

An initial oadrCreatedEvent response must be sent for each event requiring a response. Subse-
quent oadrCreatedEvent messages may also be sent to change the opt-state of a VEN when this
is allowed for a given marketContext.

The grouping of events in an oadrCreatedEvent is completely up to the VEN and does not nec-
essarily correspond to the grouping of events in an oadrDistributeEvent. The VEN is free to send
its opt-statuses by transmitting one oadrCreatedEvent payload per event or group multiple event
responses into a single oadrCreatedEvent payload.

Time

Notification Time

Rampup Duration Recovery

Event
End

Event
Start

Far State Near State Active State Completed State

Randomization

Pending

Interval 1 Interval 2
Signal #1

Signal #2
1 221

OpenADR 2.0b Profile Specification - 28 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

 Data Model 8.1.1
The OpenADR Alliance has its own schema that defines Alliance specific extensions and refer-
ences elements from Energy Interoperation and related schemas.

For each schema referenced by Energy Interoperation and used by OpenADR profiles, the
OpenADR Alliance created a separate subset schema XSD file. These schema subsets will main-
tain the same schema hierarchical element relationships, ordering of elements, mandatory cardi-
nality, type definitions, and restrictions. However, the subset schemas may not use the same
structural elements, such as abstract types and substitution groups, as the Energy Interoperation
and related schemas. The Alliance will associate namespace prefixes with the same URIs used
by the Energy Interoperation and related schemas.

URIs referenced in the OpenADR schema can be mapped to either the Alliance subset schema
files or the Energy Interoperation 1.0 standard and related schema files. Individual components
of the OpenADR payloads will successfully validate against the OpenADR schema and the OA-
SIS Energy Interoperation 1.0

 UML Models 8.1.2

Figure 7 shows the OpenADR 2.0 EiEvent Service using the OASIS EI 1.0 standard. The green
highlights are the elements that apply to OpenADR 2.0a with an indication if these elements are
mandatory (M) or optional (O), and the additional element that are needed for OpenADR 2.0b in
red.

OpenADR 2.0b Profile Specification - 29 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

Figure 7 EiEvent UML (green – A profile; red – B profile additions)

O

OpenADR 2.0b Profile Specification - 30 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

 Differences between OpenADR2.0a and 2.0b Event Mechanism 8.2
The OpenADR 2.0b profile supports additional functionalities not supported by A (see also sec-
tion 7.1). The B profile adds support for the following capabilities, mostly relating to event signals:

• Event signal type is not limited to SIMPLE. The full set of signals described in section
8.2.2 is supported.

• Events may contain multiple event signals.

• Event signals may contain EiTarget elements, distinct from the event-level EiTarget.
However, the target types must be constrained to endDeviceAsset with the enumerated
values for device type shown in the conformance rules.

• Event signals may contain baseline elements. The rules for baseline overall duration and
intervals are the same as those between the event active period and event signal inter-
vals.

• The event description may contain modificationDateTime and modificationReason ele-
ments.

• The EiOpt service can be used to send schedules from the VEN to the VTN, in addition to
oadrCreatedEvent from 2.0a.

• The oadrPoll mechanism is used in a simple HTTP PULL exchange to model the behavior
of a PUSH implementation. For more information refer to section 8.6.

 Event Targets and Resources 8.2.1
While the A Profile supported event targets (EiTarget), the B Profile includes several more target
types, and also allows device class targeting to be applied at the signal level. A VEN is a com-
munication endpoint that represents one or more logical resources (individual shedable loads,
endpoint equipment, meters, etc.). Event targets select which specific VEN resources the event
applies to. If an event target is not specified, the VEN should assume that it applies to all of its
resources. How resources are assigned properties (location, pnode associations, resourceIDs,
groupIDs, etc.) is outside the scope of the specification and is up to deployment configurations in
the VTN and VEN. However, if a VEN receives an event target that it is not configured for, it
should reject the message with the appropriate error code described in section 8.7.

 OpenADR 2.0b Signal Definitions 8.2.2
Profile B allows for a more diverse set of signals in the event messages. The eiEventSig-
nal:signalName, eiEventSignal:signalType, and eiEventSignal:itemBase attributes are used to
describe the signal. Table 1 lists standard pre-defined signals that may be used. The purpose of
the pre-defined signals is to establish a common set of signals and their attributes for the pur-
poses of interoperability. For compliance purposes it is not a requirement that a VTN or VEN
support all the signals listed in the table below.

Furthermore specific deployments are free to define their own custom signals beyond what are
defined in the table below, but there are no requirements for compliance purposes that any
VTN’s or VEN’s support such signals.

The value of the eiEventSignal:signalID attribute is deployment specific and primarily used to
differentiate signals in cases where there may be multiple signals of the same type.

OpenADR 2.0b Profile Specification - 31 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

Table 1 Signals

Signal Category Name (signal-
Name)

Type (sig-
nalType)

units (item-
Base)

Allowed
Values Description

Simple levels SIMPLE level None 0,1,2,3 Simple levels

Price of electricity

ELECTRICI-
TY_PRICE price curren-

cy/kWh any
This is the cost of elec-

tricity expressed in abso-
lute terms

ELECTRICI-
TY_PRICE

pric-
eRelative

curren-
cy/kWh any

This is a delta change to
the existing price of elec-

tricity

ELECTRICI-
TY_PRICE

priceMulti-
plier None any This is a multiplier to the

existing cost of electricity

Price of energy

ENERGY_PRICE price curren-
cy/kWh any

This is the cost of energy
expressed in absolute

terms

ENERGY_PRICE pric-
eRelative

curren-
cy/kWh any

This is a delta change to
the existing price of ener-

gy

ENERGY_PRICE priceMulti-
plier

None any This is a multiplier to the

existing cost of energy

Demand charge

DEMAND_CHARGE price currency/kW any
This is the demand charge

expressed in absolute
terms

DEMAND_CHARGE pric-
eRelative currency/kW any

This is a delta change to
the existing demand

charge

DEMAND_CHARGE priceMulti-
plier None any This is a multiplier to the

existing demand charge

Customer bid levels

BID_PRICE price currency/XX any This is the price that was
bid by the resource

BID_LOAD setpoint powerXXX any
This is the amount of load
that was bid by a resource

into a program

BID_ENERGY setpoint energyXXX any
This is the amount of en-
ergy from a resource that

was bid into a program

Used to dispatch
storage resources

CHARGE_STATE setpoint energyXXX any

This is used to either
charge or discharge a

certain amount of energy
from a storage resource

until its charge state
reaches a certain level.

CHARGE_STATE delta energyXXX any

This is the delta amount of
energy that should be con-

tained in a storage re-
source from where it cur-

rently is.

CHARGE_STATE multiplier None
 0 < 1

This is the percentage of
full charge that the storage

resource should be at.

OpenADR 2.0b Profile Specification - 32 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

These instructions
are used to set the
load to values that

can be expressed in
terms of the desired

load

LOAD_DISPATCH setpoint powerXXX any This is used to dispatch
loads to a specific amount

LOAD_DISPATCH delta powerXXX any

This is used to dispatch
loads to some offset from
an agreed upon baseline.

Note that the baseline may
be the current power con-

sumption.

LOAD_DISPATCH multiplier None
 any

This is used to dispatch
loads as some multiple of

power against some
agreed upon baseline.

Note that the baseline may
be the current power con-

sumption.

LOAD_DISPATCH level powerXXX
integer

value from
-10 to +10

This is used to specify the
load in terms of discrete

levels.

These instructions
are used to set the
load control to val-

ues that are relative
to the load control-
ler and its output

capacity. This does
not require the VTN
or the VEN knowing
precisely what the
load consumption
level is, but are

expressed in ways
that the VTN can

know that the signal
values will either
increase or de-
crease the load
consumption re-

gardless of the spe-
cific type of device
that is performing
the load control.

These can be used
for some aspects of
direct load control
by mapping these

general instructions
to specific load con-

trol commands in
the VEN without the

VTN needing to
know precisely what
device may be con-

LOAD_CONTROL
x-

LoadCon-
trolCapacity

None 0 - 100%
(0.0 - 1.0)

This is an instruction for
the load controller to op-

erate at a level that is
some percentage of its

maximum load consump-
tion capacity. This can be
mapped to specific load
controllers to do things

like duty cycling. Note that
1.0 refers to 100% con-
sumption. In the case of
simple ON/OFF type de-
vices then 0 = OFF and 1

= ON.

LOAD_CONTROL

x-
LoadCon-
trolLevel-

Offset

None integer
value

Discrete integer levels that
are relative to normal op-

erations where 0 is normal
operations. There is no
requirement to link the

setpoints to specific load
consumption values, but
the intention is that the
higher the setpoint the
less load is consumed.

Note that these are con-
troller set points that can

be mapped at the VEN
side to something as sim-

ple as thermostat tempera-
ture set point offsets.

OpenADR 2.0b Profile Specification - 33 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

suming the signal.

LOAD_CONTROL
x-

LoadCon-
trolSetpoint

None any value

Load controller set points.
There is no requirement to
link the setpoints to specif-

ic load consumption val-
ues. Note that these are

generic controller set
points and can be mapped
at the VEN side to some-

thing as simple as specific
thermostat temperature

set points.

LOAD_CONTROL

x-
LoadCon-

trolPercen-
tOffset

None

any per-
centage,

both posi-
tive and
negative

Percentage change from
normal operations. The

percentage does not refer
to specific load consump-
tions values, but to load
control operation levels.

The lower the percentage
the less load is consumed.

OpenADR 2.0b Profile Specification - 34 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

 OpenADR 2.0b Report Service 8.3

 Introduction 8.3.1
This section describes the reporting service for the OpenADR 2.0b profile. For detailed report
content please see Annex A.

8.3.1.1 Report Types
The OpenADR Alliance supports several well-known report types. Each report type is intended to
represent a certain set of reporting functionality that is supported by either a VEN or a VTN that
claims to support that type. Figure 8 gives the taxonomy of the OpenADR report types.

For compliance purposes VTNs and VENs are not required to support all the different types of
reports (see conformance rule 510). Furthermore for specific deployments there may be reports
used that do not conform to any of the standard Alliance report profiles, but these are not rele-
vant for compliance purposes.

Figure 8 Report types

Each of the report types is described in more detail below.

METADATA – This report type is used to specify reporting capabilities. It is exchanged as part of
the report registration process that is described in section 8.3.2.1. The METADATA report can
contain a specification for one or more type of reports, each report having its own set of report
descriptors and specifications. Each report in the METADATA report has a reportSpecifierID that
is used in subsequent interactions to refer to that report specification. Each report specification
in the METADATA report will use the reportName attribute to indicate which of the well-known
report profiles it is referring to. All VTN and VEN implementations that conform to profile B must

OpenADR Alliance
Report Types

METADATA DATA REPORTS

TELEMETRYHISTORY

HISTORY USAGE

GREEN BUTTON

TELEMETRY
USAGE

TELEMETRY
STATUS

OpenADR 2.0b Profile Specification - 35 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

support the METADATA report and in the case where a VTN or VEN does not support any report-
ing capabilities, for compliance purposes it must still support sending the METADATA report
message in order to portray the fact that it does not support any reporting capabilities.

DATA REPORTS – These reports are used to report actual data that may be measured or calcu-
lated. The core element of a Data Report is the so called “data point”. A data point represents a
certain quantity that may be measured or calculated as part of a report. Each data point has at-
tributes such as units, etc. A Data Report may contain one or more data points. The METADATA
report will contain a report with a set of data points that can appear in that report and when an
actual report is requested the set of data points that should appear in the report are specified by
the requesting party. Each data point is represented in the schema with the rID attribute. For ex-
ample, assume a VEN can measure both energy and power as two separate data points. The
VEN has the choice of either specifying that it can generate two separate reports, each with a
single data point or it may specify that it can generate a single data report with two data points.
The VTN would then make the appropriate report request to get the data.

There are several sub-categories of Data Reports as described below.

• DATA REPORTS HISTORY – This is a type of data report in which the history of the data
point values is logged and can be subsequently requested. These include the following
specific types:

o HISTORY_USAGE – these are logs of usage data that are typically logged by
VEN’s and can be queried by the VTN

o GREEN BUTTON – this is usage history that can be transmitted using the well-
known GREEN BUTTON standard payloads. VTNs can make Green Button data
available to VENs in order to enable more accurate energy conservation strate-
gies. The Green Button data can be tailored and requested to address OpenADR
event time frames as needed.

• DATA REPORTS TELEMETRY – The term telemetry in the context of OpenADR refers to

data that is reported periodically in real time and includes the following specific report
types:

o TELEMETRY_USAGE – this is usage data that is periodically reported from the
VEN to the VTN in real time.

o TELEMETRY_STATUS – This is the status of a resource, which may be periodi-
cally reported from the VEN to the VTN.

 Core Reporting Operations 8.3.2

The reporting service supports the exchange of reports between the VEN and VTN and vice ver-
sa. All report interactions between the VEN and the VTN are built upon the following core opera-
tions.

• Registering Reporting Capabilities
• Requesting Reports
• Sending Reports
• Canceling Reports

This section describes the logical payload exchanges that support each of these operations.

OpenADR 2.0b Profile Specification - 36 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

8.3.2.1 Register Reporting Capabilities
This general use case describes how one party's reporting capabilities are registered with the
other party. Report registration is performed after completion of party registration, both from the
VTN to the VEN and from the VEN to the VTN. In addition, any party may send report registra-
tions at any time.

Figure 9 Interaction diagram: Register Reporting Capabilities

In this use case, depicted in Figure 9, the source party sends its reporting capabilities to the tar-
get party. The source party's reporting capabilities are specified using a special well-known re-
port profile called the METADATA report, which is exchanged using the same schema as any
other report.

The METADATA report contains a collection of all the different types of reports that can be sent
by the source party (VEN or VTN) that is generating the report. Each report specified in the
METADATA report is uniquely identified by using the reportSpecifierID attribute, which is gener-
ated by the source party when registering the report. The reportSpecifierID will allow the target
party to make subsequent requests for that specific report. The reportRequestID of the oad-
rRegisterReport of the source party must be set to 0 (refer to section 8.3.2.2 for a description of
the difference between reportSpecifierID and reportRequestID).

Each report specified in the METADATA report is a specification for the elements and attributes
that may appear in that report and is based upon one the well-known report profiles. By specify-
ing the meta data for the report as part of this registration process, the actual reports that may
be exchanged in the future need only refer to the reportSpeciferID along with the actual data
without the need to send all the other report description attributes such as units, etc. See the
sample METADATA payloads for specific reports to get more details on how the various attrib-
utes of the METADATA report are used, as well as Annex A for detailed report descriptions of
both METADATA reports and actual data reports.

The interaction proceeds using the following steps:

(1) The source party first sends its reporting capabilities to the target party by using the oad-

 sd Register Reporting Capabilties

Operation Source (VEN or
VTN)

(from Actors)

Operation Target (VEN or
VTN)

(from Actors)

oadrRegisterReport(METADATA report)

oadrRegisteredReport(optional oadrCreateReport)

oadrCreatedReport(If report requested)

oadrResponse()

optional oadrReportRequest)

OpenADR 2.0b Profile Specification - 37 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

rRegisterReport payload. In general the oadrRegisterReport payload is the same as the oad-
rUpdateReport payload except that it contains a METADATA report. The source party sends
the special well known report of type METADATA using the oadrReport schema as described
above.

(2) The target party responds with the oadrRegisteredReport payload. The target party's re-
sponse may contain an oadrRequestReport object requesting which reports the source party
should generate. If there are reports that the target party knows that it wants to receive from
the source party then it should make those requests as part of this step. This is similar to re-
questing a report using oadrCreateReport as specified in section 8.3.2.2.

(3) If the target party requests that the source party create any reports as part of step (2) then
the source party responds with the oadrCreatedReport payload.

In essence step (2) and (3) are equivalent to and use the same data structures as the interaction
in which the target party requests reports from the source party using oadrCreateReport, as
specified in section 8.3.2.2.

Every exchange of the METADATA report must supply all the reporting capabilities of the source
party (VTN or the VEN) and will therefore supplant any previously exchanged METADATA report.
Furthermore the sending of the METADATA report implicitly cancels the sending of all reports
that the source party may have previously requested from the target party.

If the target party does not request any reports as part of step (2) then the source party should
assume that there are no reports to be generated and sent to the target party. Therefore if there
are any reports that the target party has previously requested from the source party then it must
make those requests again as part of step (2).

The source party can therefore use this interaction at any time to request that the target party
notify the source party of any reports that it should create and send. This provides a mechanism
for the source and target party to synchronize both the reporting capabilities of the source party
and the report requests of the target party.

8.3.2.2 Request Reports
This use case, depicted in Figure 10, shows how one party may request reports from the other
party. Note that any reports that are being requested must correspond to one of the reports that
were previously specified in the METADATA report that was previously sent by the other party.

OpenADR 2.0b Profile Specification - 38 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

Figure 10 Interaction diagram: Request Reports

The source party requests a report from the target party by using the oadrCreateReport payload.
That payload contains a set of reportSpecifierID's that correspond to reports in the METADATA
report that was previously sent by the target party as part of the previously described oadrRegis-
terReport interaction (refer to section 8.3.2.1). As part of the report request the source party
specifies a set of reportRequestID's that are used in subsequent operations on this report re-
quest.

In short the reportSpecifierID is generated by the source during report registration (as specified
in section 8.3.2.1) to uniquely identify the report contents of a METADATA report, while the re-
portRequestID is generated by the source party of an oadrCreateReport (or oadrReportRequest
object in an oadrRegisteredReport during registration) and associates the reportSpecifierID with
a specific report request. For example, the source requesting a report may select only a certain
subset of all data points (i.e., rIDs) that have been registered in the METADATA report identified
by reportSpecifierID.
All subsequent reports sent from the target party that are in response to this request use the re-
portRequestID to identify the report.
The response to the oadrCreateReport payload is the oadrCreatedReport payload.

Note that the source party can only send the oadrCreateReport after the target party has sent its
METADATA report as part of the reporting registration process. The exception to this is the
METADATA report, which may be requested at any time by using the well-known string
“METADATA” as the reportSpecifierID.

While the reportSpecifierID dictates the type of data that may appear in a report there are some
reporting parameters that are specified by the source party when making this request including
the following:

• The specific data items to appear in the report as specified by the rIDs from the correspond-

ing METADATA report. The rID attribute is an identifier in the METADATA report that is as-
sociated with a specific type of value that may appear in the report. This is sometimes re-
ferred to as a data point and allows multiple data points to exist in a single report. The rID's
allow the source party to request a subset of possible data points that should be reported by
the target party.

• Whether this is a one-time report or a recurring data stream.
• If it is a recurring data stream the following temporal parameters are also specified: The time

frame over which the report should be generated (i.e., next month, indefinitely, etc.), the fre-

 sd Request Reports

Operation Source (VEN or
VTN)

(from Actors)

Operation Target (VEN or
VTN)

(from Actors)

oadrCreateReport(reportRequestID, reportSpecifierID)

oadrCreatedReport()

OpenADR 2.0b Profile Specification - 39 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

quency at which the data points should be logged, and the frequency at which the report
should be generated.

• If it is a onetime history report then the request specifies the span of time that the report
should cover.

• The meaning of dtstart in the telemetry report request defines the start time of data collection
with same meaning as the dtstart in the returned report. For periodic telemetry reports con-
taining point data, if granularity and duration are the same the report is sent immediately af-
ter the request. If the report has interval data, the report will be sent after the first interval
time frame. If granularity is smaller than duration, the delivery of report will be delayed until
enough data is collected.

See the example report request payloads for more detailed information on the various attributes.

OpenADR 2.0b Profile Specification - 40 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

8.3.2.3 Send Reports
This use case defines how the actual reports may be exchanged.

Figure 11 Interaction diagram: Send Reports

Figure 11 depicts the source party sending a report to the target party.

This operation can be performed by the source party only after a previous report request interac-
tion is performed by the target party.

This operation uses the same oadrReport object as the report registration operation did, but is
used to exchange a report with actual data elements as opposed to the METADATA report used
in the registration process.

The reports sent in the oadrUpdateReport payload use the EiReport schema with the reques-
tReportID as defined by the target party in the previous report request interaction that prompted
the sending of this report.

The response sent by the target party uses the oadrUpdatedReport payload to acknowledge re-
ceipt of the report. As part of the oadrUpdatedReport response the target party may cancel the
sending of any future reports using the optional oadrCancelReport object, which contains a list of
reportRequestIDs. There is no confirmation of the cancellation if included in the oadrUpdatedRe-
port payload, but if the report continues to be sent the receiving party should use oadrCancelRe-
port to cancel the report.

See the various sample report payloads for more details on the report attributes.

 sd Send Reports

Operation Source (VEN or VTN)

(from Actors)

Operation Target (VEN or VTN)

(from Actors)

oadrUpdateReport(report with reportRequestID and reportSpecifierID)

oadrUpdatedReport()optional oadrCan-
celReport)

OpenADR 2.0b Profile Specification - 41 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

8.3.2.4 Cancel Reports
This interaction, depicted in Figure 12 is used by the source party to cancel ongoing (i.e., period-
ic) reports that are being generated by the target party.

Figure 12 Interaction diagram: Cancel Reports

The source party uses the oadrCancelReport payload with the appropriate reportRequestID's that
were specified by the source party in a previous request report interaction (section 8.3.2.2). Up-
on receiving the oadrCancelReport payload the target party stops generating and sending the
reports corresponding to the reportRequestID's.

The response to the oadrCancelReport payload is the oadrCanceledReport payload that is sent
by the target party to acknowledge the canceling of the report.

Note that both oadrCanceledReport and oadrCreatedReport return a list of pending reports in the
oadrPendingReports object, which includes all reports that are scheduled for future delivery.

 sd Cancel Reports

Operation Source (VEN or
VTN)

(from Actors)

Operation Target (VEN or
VTN)

(from Actors)

oadrCancelReport(reportRequestID)

oadrCanceledReport()

OpenADR 2.0b Profile Specification - 42 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

 OpenADR 2.0b Registration Service 8.4
 Service Operations 8.4.1

The OpenADR 2.0 B profile uses the EiRegisterParty service to support in-band registration of
VENs with VTNs. The following service operations (listed in Table 2) are supported:

Table 2 EiRegisterParty payloads

Request Payload Response Payload Re-
ques
tor

Responder

oadrQueryRegistration oadrCreatedPartyRegistration VEN VTN

oadrCreatePartyRegistration oadrCreatedPartyRegistration

VEN VTN

oadrCancelPartyRegistration oadrCanceledPartyRegistration VEN
VTN

VTN
VEN

oadrRequestReregestration

oadrResponse VTN VEN

Registration may optionally begin with the VEN querying the VTN to determine what profiles,
transports, and extensions it may support using the oadrQueryRegistration payload (see Figure
13). This query operation can be initiated using any of the Alliance support transports, however
the VEN will need to be configured out of band with the address of the VTN in order to initiate
the query. The response to the query is the oadrCreatedPartyRegistration payload and contains
information on all the profiles and transports supported by the VTN in addition to any supported
extensions to the profile. The information received by the VEN may be used to determine the
best configuration to use when formally registering as described in balance of this section.

Figure 13 Interaction diagram: Query Registration

 sd Query Registration

VEN

(from Actors)

VTN

(from Actors)

oadrQueryRegistration()

oadrCreatedPartyRegistration(VTN Info)

OpenADR 2.0b Profile Specification - 43 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

Registration is always initiated by the VEN with the oadrCreatePartyRegistration payload (see
Figure 14). This payload provides the information on the profile and transport the VEN has de-
cided to use for communication with the VTN, in addition to other registration related information
(see Table 3). The VTN responds with an oadrCreatedPartyRegistration containing all the pro-
files and transports supported by the VTN, IDs, and other registration related information (see
Table 4). The VTN returns a registrationID in its response payload, which is used for subsequent
operations pertaining to this registration instance.

Figure 14 Interaction diagram: Create Registration

If the VEN’s registration information changes, the VEN can reregister at any time using the oad-
rCreatePartyRegistration payload referencing the current registrationID (see Figure 15). The
same registrationID will be maintained across reregistrations until one of the parties cancel the
registration.

If the VTN’s registration information changes, the VTN can request the VEN to reregister using
the oadrRequestReregistration payload. The response to this request is an oadrResponse
acknowledgement followed by an asynchronous oadrCreatePartyRegistration request from the
VEN.

 sd Create Registration - Push

VTN

(from Actors)

VEN

(from Actors)

oadrCreatePartyRegistration(VEN Info)

oadrCreatedPartyRegistration(VTN Info, registrationID)

OpenADR 2.0b Profile Specification - 44 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

Figure 15 Interaction diagram: Request Reregistration

The VTN or VEN may cancel an active registration using the oadrCancelPartyRegistration pay-
load, referencing the registrationID (see Figure 16). The other party responds with an oadrCan-
celedRegistration payload.

Figure 16 Interaction diagram: Cancel Registration

The sequence diagrams shown are for a PUSH interaction pattern. In an HTTP PULL model, the
VEN must periodically poll the VTN using oadrPoll to provide the VTN an opportunity to cancel
the registration or request the VEN to reregister. Please refer to the documentation for oadrPoll
in section 8.6 for sample sequence diagrams of the PULL interaction pattern.

 sd Request Reregistration

VEN

(from Actors)

VTN

(from Actors)

oadrRequestReregistration(venID)

oadrResponse()

oadrCreatePartyRegistration(VEN Info, registrationID)

oadrCreatedPartyRegistraion(VTN Info)

 sd Cancel Registration

Operation Source (VEN or
VTN)

(from Actors)

Operation Target (VEN or
VTN)

(from Actors)

oadrCancelPartyRegistration(registrationID)

oadrCanceledPartyRegistration()

OpenADR 2.0b Profile Specification - 45 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

 Registration Information 8.4.2
The following tables outline registration elements defined and whether the information appears in
the VEN oadrCreatePartyRegistration request or the VTN oadrCreatedPartyRegistration re-
sponse.

8.4.2.1 VEN Information in oadrCreatePartyRegistration Payload
Table 3 oadrCreatePartyRegistration payload

Registration Item Comments
requestID

registrationID Registration is only included in this payload
when re-registering.

venID Unless preconfigured, the venID is not
included in the initial registration payload, but
must be present and correct for re-registration.

oadrProfileName The profile the VEN selects to use for
communication with the VTN. Either 2.0a or
2.0b.

oadrTransportName The transport the VEN selects to use for
communication with the VTN. Either XMPP or
simpleHTTP.

oadrTransportAddress If the selected transport is simpleHTTP or
XMPP and the oadrHttpPullModel is false, this
must contain the address of the VEN server.

oadrReportOnly This boolean element is used to indicate the
implementation is a Report Only instance of
the B profile.

oadrXmlSignature This boolean element is used to indicate the
implementation supports XmlSignatures.

oadrVenName This is an optional human readable name for
the VEN.

oadrHttpPullModel This boolean element is used to indicate the
implementation uses the simpleHTTP PULL
exchange model.

OpenADR 2.0b Profile Specification - 46 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

8.4.2.2 VTN Information in oadrCreatedPartyRegistration Payload
Table 4 oadrCreatedPartyRegistration payload

Registration Item Comments
EiResponse Object

Contains standard payload response
status information.

RegistrationID

A value used to identify the
registration instance. Used for re-
registration and cancelation.

venID The venID is assigned by the VTN
and returned in the registration
response.

vtnID Provided to the VEN for inclusion in
payloads.

oadrProfiles:oadrProfile:oadrProfileName

A collection of one or more profiles
and the associated profile name.

Nested within each profile...

oadrTransports:oadrTransport:oadrTransportName

A collection of one or more transports
and the associated transport name.

oadrRequestedOadrPollFreq:duration The polling interval (i.e., the duration
between two polls) using oadrPoll
should be as requested by the VTN
during registration in oadrRe-
questedOadrPollFreq. Conformance
rule 500 defines the constraints for
oadrRequestedOadrPollFreq.

oadrServiceSpecificInfo:oadrService:oadrServiceName
oadrServiceSpecificInfo:oadrService:oadrInfo:oadrKey
oadrServiceSpecificInfo:oadrService:oadrInfo:oadrValue

An object that can contain key - value
pair information specific to a
particular named service.

oadrExtensions:oadrExtension:oadrExtensionName
oadrExtensions:oadrExtension:oadrInfo:oadrKey
oadrExtensions:oadrExtension:oadrInfo:oadrValue

An object that can contain key - value
pair information specific to a
particular named OpenADR
extension.

OpenADR 2.0b Profile Specification - 47 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

 OpenADR 2.0b EiOpt Service 8.5
 Service Operations 8.5.1

The OpenADR 2.0 B profile specifies the EiOpt service to create and communicate Opt-In and
Opt-Out schedules from the VEN to the VTN. These schedules define temporary changes in the
availability, and may be combined with longer term availability schedules and the Market Context
requirements to give a complete picture of the willingness of the VEN to respond to EiEvents re-
ceived by the VEN. The service operations listed in Table 5 are supported:

Table 5 EiOpt payloads

Request Payload Response Payload Requestor Responder
oadrCreateOpt

oadrCreatedOpt VEN VTN

oadrCancelOpt

oadrCanceledOpt VEN VTN

The VEN uses the oadrCreateOpt payload (see Figure 17) to accomplish one of the following
objectives:

• To communicate to the VTN a period of temporary availability for a specific set of eiTar-
gets

• To communicate to the VTN a period of temporary un-availability for a specific set of
eiTargets

• To optIn or optOut of a previously acknowledged event for a specific set of eiTargets
oadrCreateOpt payload that includes an optID, which can be used in subsequence operations to
reference this schedule. The VTNs response to oadrCreateOpt is an oadrCreatedOpt payload
that includes an optID, which can be used in subsequence operations to reference this schedule.

Figure 17 Interaction diagram: Create Opt

The VEN may at any time cancel a temporary availability schedule by using the oadrCancelOpt
with an optID referencing the schedule to be cancelled (see Figure 18).

 sd Create Opt Schedule

VEN

(from Actors)

VTN

(from Actors)

oadrCreateOpt()

oadrCreatedOpt()

OpenADR 2.0b Profile Specification - 48 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

Figure 18 Interaction diagram: Cancel Opt

 Detail Requirements 8.5.2
If marketContext is present in the oadrCreateOpt payload, the opt schedule must only apply to
the VENs availability with respect to events generated within the specified marketContext.

A VEN must respond with an EiEvent oadrCreatedEvent payload in response to an oadrDistrib-
uteEvent. However, further qualifications of the optType state for the event can be accomplished
by sending either an oadrCreatedEvent or an EiOpt oadrCreateOpt payload with the eventID
specified. Once oadrCreateOpt is used, it will take precedence and subsequent changes to the
opt state by oadrCreatedEvent will be ignored.

The oadrCreateOpt eiTarget must contain the venID of the VEN initiating the opt schedule. If on-
ly the venID is specified in eiTarget, then the opt schedule applies to all of the resources associ-
ated with that VEN. If additional eiTarget sub elements are defined in addition to venID, these
sub elements must be OR’d together to define a subset of the VENs resources that the opt
schedule must apply. Note that the VEN may send multiple opt schedules for different sets of
resources identified by the eiTarget element.

A new opt schedule (optIn or optOut) sent via oadrCreateOpt must be handled as follows when a
previously sent opt schedule is still active:

• If only the venID is specified in eiTarget, the previous opt schedule with respect to future
availability is replaced in its entirety by the new opt schedule for all resources associated
with the VEN.

• If sub elements are specified in eiTarget in addition to the venID, then an opt schedule
must be generated for these resources, overwriting as necessarily any previously defined
schedules for specific resources.

• Previously defined opt schedules for resources that are not specified by eiTarget must
remain unchanged.

Many aspects of an opt schedule are program specific, including:

• The type of schedules that a VEN is allowed to issue: optIn, optOut, or both
• The default opt state (optIn or optOut) for time periods not defined by either an opt or

Avail schedule (if defined)
• Whether optIn or optOut schedules have precedence in the situation where they have

overlapping time frames

 sd Cancel Opt Schedule

VEN

(from Actors)

VTN

(from Actors)

oadrCancelOpt()

oadrCanceledOpt()

OpenADR 2.0b Profile Specification - 49 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

• Whether overlapping time frames are allowed within the same schedule (optIn or optOut)
and if they are not allowed, the expected exception handling behavior

• Whether the VTN is allowed to send events during an optOut period

OpenADR 2.0b Profile Specification - 50 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

 OpenADR Poll 8.6
As new services are added to the OpenADR profiles, there becomes a need for pull-only VENs to
periodically poll the VTN, particularly for VTN-initiated use cases where the information is not
necessarily periodic and the VEN cannot predict when a VTN might want to send some infor-
mation. In the PUSH case this is a non-issue. However in the PULL case, this requires the VEN
to periodically poll the VTN, possibly at multiple different service endpoints, to retrieve all the
information that the VTN might want to provide. oadrPoll provides a solution which allows the
PULL VEN to emulate the PUSH message exchange pattern from VTN to VEN.

oadrPoll is a service independent polling mechanism used by VENs in a PULL model to request
pending service operations from the VTN. The VEN queries the poll endpoint and the VTN re-
sponds with the same message that it would have “pushed” had it been a PUSH VEN. If there
are multiple messages pending a “push,” the VEN will continue to query the poll endpoint until
there are no new messages and the VTN responds with an eiResponse payload.

The rules for which payloads are valid and how those payloads are delivered are the same as if
the VTN had initiated the operations and pushed the payloads to the VEN. Only one operation
payload may be sent by the VTN in response to the oadrPoll message.

If a logical response is required by the VTN to the received operational payload, the VEN must
send that logical response asynchronously via a transport request. The VTN should acknowledge
this logical response with an oadrResponse payload.

The VTN can optionally ignore an oadrPoll if it has not received an expected logical response to
a payload delivered as a response to a previous poll. The following table outlines the possible
response payloads when a VEN uses oadrPoll.

Request Payload Response Payload Requestor Responder
oadrPoll One of the following:

• oadrResponse
• oadrDistributeEvent
• oadrCreateReport
• oadrRegisterReport
• oadrCancelReport
• oadrUpdateReport
• oadrCancelPartyRegistration
• oadrRequestReregistration

VEN VTN

The oadrPoll request has a single sub-element, the venID initiating the oadrPoll. Below is an ex-
ample payload:

<oadr:oadrPoll ei:schemaVersion=”2.0b”>
 <ei:venID>VEN_123</ei:venID>
</oadr:oadrPoll>

OpenADR 2.0b Profile Specification - 51 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

The following sequence diagrams illustrate typical patterns using oadrPoll:

Figure 19 Interaction diagram: oadrPoll (nothing in queue)

Figure 20 Interaction diagram: oadrPoll (oadrDistributeEvent reply)

 sd oadrPoll - Nothing in Queue

VEN

(from Actors)

VTN

(from Actors)

oadrPoll()

oadrResponse()

 sd oadrPoll - oadrDistributeEv ent

VEN

(from Actors)

VTN

(from Actors)

oadrPoll()

oadrDistributeEvent()

oadrCreatedEvent()

oadrResponse()

OpenADR 2.0b Profile Specification - 52 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

Figure 21 Interaction diagram: oadrPoll (oadrCreateReport reply)

Figure 22 Interaction diagram: oadrPoll (request reregistration reply)

 sd oadPoll - oadrCreateReport

VEN

(from Actors)

VTN

(from Actors)

oadrPoll()

oadrCreateReport()

oadrCreatedReport()

oadrResponse()

 sd oadrPoll - Request Reregistration

VEN

(from Actors)

VTN

(from Actors)

oadrPoll(vtnID)

oadrRequestReregistration(oadrRegistrationInfo, registrationID)

oadrResponse()

http ack()

oadrCreateRegisterParty(oadrRegistrationInfo)

oadrCreatedRegistraterParty(oadrRegistrationInfo)

oadrPoll

OpenADR 2.0b Profile Specification - 53 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

 Application Error Codes 8.7
OpenADR 2.0 uses a 3 digit numeric error code starting with the digit “4” to communicate appli-
cation layer errors in the responseCode element of the various response objects in the schema.
There are two general categories of errors: compliance errors and deployment errors. The se-
cond digit of the error code must be used to differentiate between these two general categories
with “5” indicating compliance errors and “6” indicating deployment errors. Error scenarios docu-
mented in the conformance rules will specify which of the error codes listed below should be
used. For other error scenarios the VEN or VTN implementer will have to use their best judgment
to determine the appropriate application layer error code to use.

Compliance Error Codes
450 - Out of sequence (event ordering, uid ordering, modification number sequencing)
451 - Not Allowed (changing an event in the past)
452 - Invalid ID (eventID, optID, requestID, registrationID, etc.)
453 - Not recognized (reportName, signalName, etc.)
454 - Invalid Data (out of range signal or report data)
455 - Open
456 - Open
457 - Open
458 - Open
459 - Compliance Error - Other

Deployment Errors
460 - Signal not supported (recognized, but not supported)
461 - Report not supported (recognized, but not supported)
462 - Target mismatch (cannot resolve target/market context to VEN or its resources)
463 - Not Registered/Authorized
464 - Open
465 - Open
466 - Open
467 - Open
468 - Open
469 - Deployment Error - Other

OpenADR 2.0b Profile Specification - 54 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

9 Transport Protocol

OpenADR 2.0 supports a small number of transport protocols to accommodate different deploy-
ment scenarios. 2.0b VENs can either support HTTP or XMPP, or may support both. VTNs must
support both HTTP and XMPP.

 Simple HTTP 9.1
Simple HTTP in OpenADR 2.0 (a/b) refers to an HTTP implementation that uses HTTP POST
over TLS to propagate OpenADR payloads.

 PUSH and PULL implementation 9.1.1
9.1.1.1 PUSH Definition
In PUSH mode, messages may be sent from the VTN to VEN (pushed.) In order to use push, the
VEN must expose HTTP URI endpoints (an HTTP server) to which the VTN may send requests
such as oadrDistributeEvent. While this is the most efficient way to execute OpenADR2 over
HTTP, it presents technical difficulties as the VEN may reside behind a network firewall.

9.1.1.2 PULL Definition
In PULL mode, all operations are initiated by the VEN to the VTN. This can be thought of as a
‘polling’ mode, where the VEN periodically asks for updates from the VTN. The PULL mode re-
moves the requirement for an HTTP server on the VEN, avoiding the technical limitation present-
ed by the possibility of a network firewall in front of a VEN. However, the PULL mode has its own
limitations, namely latency (due to limited polling frequency) and increased bandwidth require-
ments.

The PULL mode may involve a ‘two-phase’ execution to complete some operations. This is due
to the nature of the VEN initiating the HTTP request. In a PUSH mode, the VTN may notify a
VEN of a new event via the oadrDistributeEvent operation. The VTN would send a request with
an oadrDistributeEvent payload, to which the VEN responds with HTTP 200 followed by an asyn-
chronous oadrCreatedEvent

However in the PULL model, the VEN requests events from the VTN using oadrPoll, to which an
oadrDistributeEvent payload is sent in the response. After parsing the response, the VEN still
needs to acknowledge the creation of any new events by making a second request using the
oadrCreatedEvent operation on the VEN.

 Service Endpoint URIs 9.1.2
The endpoint names will be of the form:

https://<hostname>(:port)/(prefix/)OpenADR2/Simple/2.0b/<service>

● “prefix” is an optional URI path prefix that may be used to separate OpenADR services
from other services that may reside on the same HTTP server.

● “Simple” indicates the simple XML over HTTP protocol
● <service> is the name of the EI service (e.g., “EiEvent”, “EiReport”, “EiOpt”, “EiRegis-

terParty”, “OadrPoll”).

The “operation” portion of a service is defined by the XML payload sent in a request. E.g., an
oadrDistributeEvent payload root element specifies the oadrDistributeEvent operation.

VTN to VEN traffic via HTTP should flow through the same well-defined service endpoints used
when communicating in the opposite direction. The oadrCreatePartyRegis-
traion:oadrTransportAddress element should contain the base address for the VEN, such as

OpenADR 2.0b Profile Specification - 55 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

"http://myaddress:8080/prefix/". When sending traffic to the VEN, the VTN should concatenate
the base address to the well known service end points to form a complete endpoint address such
as http://129.6.252.49:8080/prefix/OpenADR2/Simple/2.0b/EiReport.

Note that for implementations that expose both a VEN and VTN (such as an aggregator,) these
implementations must use different URI endpoints for their VTN and VEN interfaces. For exam-
ple, https://mycompany.com/myVTN/OpenADR2/Simple/2.0b/EiEvent and
https://mycompany.com/myVEN/OpenADR2/Simple/2.0b/EiEvent.

 HTTP Methods 9.1.3
All messages will be sent using the HTTP POST method. This helps to avoid caching and allows
all operations to contain a payload in the HTTP request body.

 Failure Conditions 9.1.4
The following failures can occur for a given operation:

● TCP (or below) fails
● HTTP fails (HTTP error code)
● application acknowledgement fails (application error code)
● response failure (timeout or application error code)

The proper action for each failure condition depends upon the application and the operation be-
ing attempted. Since all operations are idempotent, it is safe to retry any operation.

In the case of TCP failure, it is always recommended to retry the operation.
In the case of an HTTP failure, the behavior must be according to HTTP status codes defined in
section 9.1.5.
Application-level errors are defined in section 8.7.Timeout failure handling is defined below.

 HTTP Response Codes 9.1.5
The following HTTP status codes, defined in [RFC2616], are used in OpenADR:

200 OK – any response that the endpoint was able to handle completely and send a valid Open-
ADR response payload. This includes responses that may indicate an error at the application
level (e.g., ‘you gave me an invalid event ID.’) Errors that indicate a failure at the transport level
are handled by transport-level HTTP error codes:

404 Not Found – the VEN or VTN does not support the requested operation. The requestor must
not re-send the request.

406 Not Acceptable – if a payload is sent that does not validate against the EI schema, or if a
request content-type is unsupported. The requestor must not re-send the request without first
modifying it.

501 Not Implemented – if any request is made with an unsupported HTTP method. The reques-
tor must not re-send the request without fixing the HTTP method.

503 Service Unavailable – indicates that the server is temporarily unavailable, possibly due to
inability to handle the current request load. This error in particular must indicate to the requestor
that it must execute quiesce logic in order to not put further strain on the server. The requestor
must retry the request after the proper quiesce period.

500 Internal Server Error – undefined or unexpected server error. The requestor may retry the
request after a quiesce period.

OpenADR 2.0b Profile Specification - 56 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

For all error (non-200) codes, the content body of the response is undefined. The server may
choose to send some informational message in the response, but the requestor is not obligated
to parse or understand it.
All application-level error conditions are conveyed through the status code element of oadrRe-
sponse payload.

 Message Timeouts 9.1.6
There are no prescribed connect or response timeout thresholds for OpenADR 2.0. In general,
implementations must allow configurable timeouts in order to handle IP networks with different
latency characteristics. HTTP clients must use a request timeout of at least 5 seconds.

 Message Retry / Quiesce Behavior 9.1.7
When a request fails for any reason (either due to physical or network-level failure or a timeout)
the requestor must institute ‘back-off’ or quiesce logic to avoid flooding the network or receiver
with requests.
Clients must begin quiesce at some small interval (say, 1 second) plus or minus some random
‘jitter,’ which is a small percentage of that interval (say, 10%). So for example, the first quiesce
interval for a device might be between 0.9 and 1.1 seconds. Then the device may retry the re-
quest. If subsequent retries fail, quiesce interval must double from the prior interval, again add-
ing a random jitter of plus or minus 10% of that interval. This doubling for subsequent failures
must continue up to some maximum, probably dependent on the poll interval in the case of a
VEN polling a VTN. This is known as a “truncated binary exponential back off algorithm.”

 PULL Timing 9.1.8
The ability to configure the poll interval for a PULL mode is not defined in OpenADR 2.0a, how-
ever VEN implementations must allow the poll interval to be configurable at a millisecond resolu-
tion.

In 2.0b, a VTN may configure the minimum poll interval for the VEN by setting oadrCreatedPar-
tyRegistration:oadrRequestedOadrPollFreq accordingly.

VENs must also be configurable to induce some ‘jitter’ – a random offset from the absolute poll
interval – in order to avoid request spikes on the VTN caused by many VENs initiating a PULL
request at the exact same instant within the poll interval.

 HTTP Headers 9.1.9
The following HTTP headers must appear in requests or responses (where indicated):

9.1.9.1 Accept
The accept request header specifies the expected content-type of a response. Since responses
are always “application/xml”, the Accept header may be omitted. However, if it is included, the
value of the Accept request header must always be “application/xml”.
9.1.9.2 Accept-Encoding
This request header indicates if a client supports content compression of the response payload.
A VEN may include this header in a request if it supports content compression such as gzip or
deflate. If the VEN includes this header, the VTN must honor it and compress the response con-
tent using one of the methods given in the request header.

9.1.9.3 Content-Encoding
If a VTN is responding to a request for which it has compressed payload, it must include a con-
tent-encoding response header indicating the correct encoding method, such as gzip or deflate.

OpenADR 2.0b Profile Specification - 57 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

PUSH operations from a VTN must not utilize the content-encoding header in the request, since
it would require the VTN to have a priori knowledge of which content-encodings are supported by
each and every VEN.

9.1.9.4 Content-Length
The content-length header must be used according to [RFC2616] to indicate content body size of
all request and response payloads.
Special Note: ‘chunked’ transfer encoding (where content-length is unknown) must not be used
in OpenADR 2.0. Implementers must assume that the total content body length is known when
the response headers are sent, and must not send chunked responses.

9.1.9.5 Content-Type
Must be used for request and response messages, indicating payload MIME type. The appropri-
ate value is “application/xml”. The content-type may also specify a character encoding. For
OpenADR 2.0, the only supported character encoding is UTF-8. If a charset is included, the en-
tire header value must appear as “application/xml; charset=utf-8”.

9.1.9.6 Host
The ‘Host’ header must be included in all requests per HTTP/1.1 Section 14.23 (3).

9.1.9.7 User-Agent
The requestor may include the User-Agent header but its presence must not be relied upon, nor
must it materially affect the behavior of the server handling the request.

 Transport Specific Security 9.2
TLS must be used to encrypt all traffic, regardless of the authentication method used. The client
must always validate the server’s TLS certificate given during the handshake.

9.2.1.1 SSL/ TLS Client Certificate
Client certificates must be used for HTTP client authentication. The entity initiating the request
(the client) must have an X.509 certificate that is validated by the server during the TLS hand-
shake. If no client certificate is supplied, or if the certificate is not valid (e.g., it is not signed by a
trusted CA, or it is expired) the server must terminate the connection during the TLS handshake.

If the certificate appears valid during the TLS handshake, the connection is established and the
HTTP request proceeds. Once the server receives the HTTP request, it must perform authentica-
tion, given the credentials in the client certificate. The VTN should use the certificate public key
as the primary identification mechanism. The client credentials must be compared to ensure they
match the venID that appears in OpenADR payload of the client request. If credentials do not
match, or if the server otherwise determines that the request is not authorized, it must respond
with an application layer 463 error in the eiResponse object of an appropriate message (e.g., in
an oadrCreatedPartyRegistration response if the request from the VEN was an oadrCreatePar-
tyRegistration).

OpenADR Security Certificates are regulated by the [OpenADR 2.0 Certificate Policy].

 XMPP 9.3
XMPP is a stateful, bi-directional protocol ideal for transmitting messages in XML format. The
core protocol is specified in [RFC6120], and addressing is defined in [RFC6122]. Additional in-
formation including accepted extensions can be found at http://xmpp.org/.

OpenADR 2.0b Profile Specification - 58 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

 PUSH and PULL implementation 9.3.1
By nature, XMPP is a bi-directional, stateful protocol. As such, any client utilizing XMPP can im-
plement both PUSH and PULL operations seamlessly. PULL operations are simply those initiat-
ed by the VEN, and PUSH operations are initiated by the VTN.

 Service Endpoints 9.3.2
A Jabber Identifier (JID) defines both VTN and VEN service endpoints, which is similar to an
email address. The fully qualified JID performs the same function as an endpoint URI in an HTTP
implementation. The definition of JIDs is further described in section 9.3.4.1 of this document.

 Service Execution 9.3.3
Because XMPP is a message-based protocol, execution of OpenADR services occurs by passing
XMPP messages that contain an OpenADR XML payload.

 Implementation of XMPP Features for OpenADR 9.3.4
9.3.4.1 JIDs
While the prospect of using of multiple resources per JID opens some interesting possibilities
(e.g., exposing each building at a facility as a different resource,) this strategy should be used
with some caution, as same mechanism is not supported by other OpenADR transports such as
HTTP.

VEN clients should always authenticate with a fully qualified JID (rather than allow the server to
assign a random resource ID.)

VTN clients may choose to expose OpenADR operations either as an XMPP service or as a cli-
ent JID. Although most OpenADR service operations will be ‘pushed’ from VTN to VEN, a VEN
may still need to send some requests to the VTN. Rather than use some configuration to define
the JID for VTN services, OpenADR services must be discovered at runtime via service discov-
ery (described in section 9.3.4.9.)

VTN to VEN traffic via XMPP must flow through an endpoint defined by a single fully qualified
JID. This VEN JID will be communicated to the VTN as part of the oadrCreatePartyRegistration
payload in the oadrTransportAddress element. The resource name used for the JID can be arbi-
trary such as "client". For instance, the contents of the oadrTransportAddress element might be
something like "ven@domain/client".

VEN to VEN traffic is disallowed and must be filtered by the XMPP server.

9.3.4.2 Use of the Packet ‘type’ Attribute
All operations must use the ‘set’ IQ type attribute for all OpenADR service operations.

9.3.4.3 Use of Message versus IQ Packets
Any OpenADR2 service operations that require an application-level response (e.g., an Open-
ADR2 response payload) or a transport-level response code must use an IQ packet. The XMPP
protocol then mandates a response IQ from the recipient.

Any OpenADR2 service operations that do not require a response, such as a broadcast operation
(or possibly feedback,) may use a message packet to send the OpenADR2 payload. Handling of
the packet should be identical to if it were an IQ, except that the recipient sends no response.
This is a bandwidth optimization for use cases where a response is not expected, and a re-
sponse IQ would be unnecessary.

OpenADR 2.0b Profile Specification - 59 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

9.3.4.4 Error Handling
9.3.4.4.1 Transport-Level Status Codes
Under normal conditions, an IQ response will have a type=’result’ attribute. This is analogous to
an HTTP 200 response. OpenADR2 service operations that define an empty HTTP 200 response
will simply look like an IQ element with no child payload element:

<iq type='result'
 to='ven1234@xmpp.myvo.net/client'
 from='vtn.xmpp.somevtn.net'
 id='1' />

9.3.4.4.2 Transport-Level Errors
Operations that result in a transport-level error will have a type=’error’ and a child <error> ele-
ment that indicates the transport-level status code as described in [RFC6120] section 8.3. For
example:

<iq type='error'
 to='ven1234@xmpp.myco.net/client'
 from='vtn.xmpp.somevtn.net'
 id='2'>
 <error type=’modify’>
 <bad-request xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
 </error>
</iq>

Since XMPP does not use numeric status codes, direct mapping of HTTP status codes is not
possible, and logic for handling transport-level errors is outside the scope of this document.
Guidelines for handling different types of XMPP errors can be found in [RFC6120] section 8.3.3.

In particular, if an OpenADR Profile B request is made to a Profile A client, the client should re-
spond with a feature-not-implemented error as defined in [RFC6120] section 8.3.3.3.

If a client receives an OpenADR payload that does not adhere to the OpenADR schema, a client
should respond with a bad-request error as defined in section 8.3.3.1 of [RFC6120].

Note that application-level errors must be handled the same as in HTTP. That is, a normal ‘result’
XMPP response should be returned with the application-level error details in the OpenADR pay-
load.

9.3.4.5 Presence
VEN clients must use presence packets to notify subscribed entities of online and offline status
as described in [RFC6121] section 4. All other status broadcasts from a client should be consid-
ered informational.

After a VEN completes session negotiation, it must send an ‘available’ presence stanza as de-
fined in Section 4.2.1 of [RFC6121]:

<presence />

OpenADR 2.0b Profile Specification - 60 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

If a VEN deliberately terminates its XMPP connection (e.g., due to a graceful shutdown, not an
unexpected, sudden connectivity loss,) it must first send an ‘unavailable’ presence stanza as de-
fined in Section 4.5.1 of [RFC6121]:

<presence type='unavailable'/>

The VTN should not generally advertise its presence to the VENs. A VTN could subscribe to
VENs and receive presence updates, but may cause scalability issues and should be used with
caution.

9.3.4.6 XMPP Ping
Support for XMPP ping (as specified in [XEP-0199]) is mandated from the VEN to the XMPP
server. The VEN may notice disconnection from XMPP server and, e.g., reestablish connection
or send an alarm if one or more pings are not replied within a certain time. XMPP ping intervals
and other parameters related to XMPP ping may be set locally, and exchange of these
parameters is not required as part of registration.

9.3.4.7 Authentication
All clients must support SSL/TLS and authentication as defined in section 13.8 and 13.9.4 of
[RFC6120]. Clients must also implement Simple Authentication and Security Layer SASL EX-
TERNAL in order to use certificate authentication as defined in [RFC6120].

The username of the VTN/VEN logging in to the XMPP server must match the Common Name
(CN) field of the x509 certificate that is used in the authentication process.

9.3.4.8 Rosters
While rosters are a core feature of XMPP and commonly occur during XMPP session initiation,
they have no defined role within OpenADR2 and therefore their use is undefined within the scope
of OpenADR2.0. A roster request may be performed by a client, however under most circum-
stances, the server may simply respond with an empty roster. Optimally, a client (particularly
VEN clients) should not request a roster from the server for the purposes of OpenADR.

More specifically, VEN clients should not typically add other entities to its roster, as this will re-
sult in additional network overhead due to presence broadcasts.

VTN clients might choose to use the roster as a mechanism to track presence of online VEN cli-
ents, however this is not strictly a feature or requirement of OpenADR.

9.3.4.9 Service Discovery
XMPP Service Discovery [XEP0030] must be used to define the address for OpenADR services
on the VTN. This allows the VTN flexibility in how it implements services, while removing the
need for additional configuration on the VEN, which would be outside the scope of OpenADR.

9.3.4.9.1 Discovery of the OpenADR Feature
After a VEN has completed session initiation, it may perform an [XEP0030] ‘info’ query to the
bare domain to which the VEN has authenticated. For example, if a VEN has connected as
‘ven1@xmpp.myco.net/client’ then its initial service discovery query would look like the following:

OpenADR 2.0b Profile Specification - 61 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

<iq type='get'
 from='ven1@xmpp.myco.net/client'
 to='xmpp.somevtn.net'
 id='info1'>
 <query xmlns='http://jabber.org/protocol/disco#info'/>
</iq>

To which the server would respond:

<iq type='result'
 from='xmpp.somevtn.net'
 to='ven1@xmpp.myco.net/client'
 id='info1'>
 <query xmlns='http://jabber.org/protocol/disco#info'>
 <feature var='http://openadr.org/openadr2'/>
 <feature var='http://jabber.org/protocol/disco'/>
 </query>
</iq>

This indicates, in an XMPP-compliant fashion that the XMPP server supports the OpenADR2 pro-
tocol.

9.3.4.9.2 Discovery of OpenADR Service Endpoints
Then VEN may then perform an ‘items’ query, with the ‘node’ set to the OpenADR2 namespace
'http://openadr.org/openadr2#services' as such:

<iq type='get'
 from='ven1@xmpp.myco.net/client'
 to='xmpp.somevtn.net'
 id='items1'>
 <query xmlns='http://jabber.org/protocol/disco#items'
 node='http://openadr.org/openadr2#services'/>
</iq>

The VTN must then respond with the JIDs used for each OpenADR2 service, for example:

<iq type='result'
 from='xmpp.somevtn.net'
 to='ven1@xmpp.myco.net/client'
 id='items1'>
 <query xmlns='http://jabber.org/protocol/disco#items'
 node='http://openadr.org/OpenADR2#services'>
 <item jid='event.openadr2.xmpp.somevtn.net'
 node='http://openadr.org/OpenADR2/EiEvent' />
 <item jid='feedback.openadr2.xmpp.somevtn.net'
 node='http://openadr.org/OpenADR2/EiFeedback' />
 </query>
</iq>

OpenADR 2.0b Profile Specification - 62 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

Note that all services could use the same JID or different JIDs and JIDs may be subdomains
(which are common for XMPP services) or fully-qualified with a ‘localpart’ and resource.

9.3.4.9.3 Service Discovery on VEN Clients
VEN clients may choose to implement service discovery to provide supplemental information
about their client (such as client IP address, available disk space, etc.) However such supple-
mental information is outside the scope of OpenADR. At the bare minimum, if a VEN supports
XEP-0030 queries, it must indicate support for the 'http://openadr.org/openadr2' feature, as de-
scribed in the “Discovery of the OpenADR Feature” section above.

 Security Considerations 9.3.5
Beyond authentication (as defined above) additional steps are required to secure an XMPP net-
work. In particular, VEN clients must not be allowed to communicate with each other (at least,
not within the scope of OpenADR.) Clients may opt to implement some sort of whitelist to control
access from different JIDs, which would be similar to implementing a firewall in an HTTP PUSH
scenario.

However, ultimate responsibility for controlling access between XMPP clients must be held at the
XMPP server level. In most cases, the XMPP server will be logically deployed alongside or as an
integrated part of a VTN. The XMPP server can then implement access controls to keep VENs
logically isolated so they can only communicate with the VTN.

OpenADR 2.0b Profile Specification - 63 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

10 OpenADR 2.0 Security

OpenADR 2.0 aspires to conform to NIST Cyber Security requirements and to follow the guide-
lines provided by the “Security Profile for OpenADR” prepared by the UCAIug OpenADR Task
Force and SG Security Joint Task Force. Furthermore additional NIST guidelines were taken into
account to determine the appropriate security for OpenADR profiles. This background exercise
was intended to make sure that the OpenADR meets the NIST Cyber Security and as well as any
DR service provider deployment requirements. The OpenADR Alliance provides this basic securi-
ty framework for testing to meet these stringent requirements and understands that the final se-
curity scheme would be determined by the DR program deployments.

It is expected that many OpenADR 2.0 implementations will make use of existing cloud compu-
ting services and platforms. The OpenADR Alliance has therefore decided to allow currently
available security protocols and cipher suites until they are deprecated for the intended use. All
certified OpenADR 2.0 products must be upgradable. The mechanism of the upgradability is left
to the manufacturers’ implementation.

OpenADR 2.0 uses common security mechanisms, e.g., TLS, without any modification.

Manufacturers shall refer to the latest version of the NIST Special Publication 800-131A when
choosing their security algorithm.

The Demand Response Program operator (e.g., utility) will need to require the appropriate level
of security for their system

 Architecture and Certificate Types 10.1
To provide security services like authentication, confidentiality and integrity, VENs and VTNs
must use Public Key Infrastructure (PKI) certificates. Two levels of security are defined for
OpenADR 2.0, called ‘Standard’ and ‘High’. The ‘Standard’ security uses TLS for establishing
secure channels between a VTN and a VEN for communication. ‘High’ security additionally uses
XML signatures providing non-repudiation for documentation purposes (e.g., a signed OpenADR
event may be stored in a database for later documentation that an event has actually been re-
ceived).

OpenADR 2.0 adopts an open architecture for security and will not restrict itself to some specific
or proprietary technologies. There are primarily two public key cryptography algorithm options for
using PKI certificates, namely RSA and ECC. While RSA is more widely acceptable, ECC pro-
vides the benefits of more efficient cryptographic operations like encryption and digital signatures.
For the same cryptographic strength, ECC key sizes are much shorter as compared to RSA keys.
This is especially important for embedded devices that favor efficient cryptography. As men-
tioned, RSA is more widely accepted on the Internet and has multiple certificate providers mak-
ing it easier to select a provider which best matches the requirements.

To retain the benefits of both options and for the purposes of interoperability, the VTNs must
support both, ECC and RSA certificates, each from a well-known Certificate Authority (CA) –
governed by the [OpenADR 2.0 Certificate Policy]. The final design may have more than two pro-
viders but it will be ensured that at least one ECC and one RSA certificate authorities are includ-
ed. A VEN can choose to use one or more PKI certificates on the device. The only restriction is
that a VEN must implement at least one certificate from the approved list of certificate and CAs
for the VTN. This list will be decided upon in advance and will be publicly available. To establish
a secure communication channel between the VTNs and VENs, VTNs will have to support all the
certificates in the approved list of certificates types and CAs. Upon initiating the communication,
a VEN will have the choice to use any one of them.

OpenADR 2.0b Profile Specification - 64 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

The following parameters will be used for the certificates:

• ECC – 256 bits or longer keys.
• RSA – 2048 bits or longer keys.
• Certificate types – X.509v3

See references.5

 Certificate Authorities 10.2
The [OpenADR 2.0 Certificate Policy] and the OpenADR/NetworkFX partnership govern the
OpenADR Security Certificates.

 Certificate Revocation 10.3
Please refer to the [OpenADR 2.0 Certificate Policy] for details.

 TLS and Cipher Suites 10.4
OpenADR 2.0 manufacturers shall review [NIST SP 800-131] for deprecation dates and current
security requirements. OpenADR 2.0b requires TLS1.2 and the corresponding cipher suites.

Requirements (mandatory for interoperability):

Transport Layer Security: TLS 1.2

Cipher Suites:

ECC – TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256

RSA – TLS_RSA_WITH_AES_128_CBC_SHA256

To accommodate legacy systems, there is a grace period during which OpenADR 2.0 VTNs and
VENs can still be certified if they only support TLS1.0 (or TLS1.1). The grace period is described
in the OpenADR Certification Guidelines and must not reach past any dates listed in the NIST SP
800-131 guidelines (disallowance of SHA1 and TLS1.0/TLS1.1). All VTNs must be re-certified
after this grace period is over. The OpenADR Alliance strongly recommends using TLS1.2.

The following ciphers are used for legacy devices using TLS1.0 (and TLS1.1) until the grace pe-
riod ends:

ECC – TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA

RSA – TLS_RSA_WITH_AES_128_CBC_SHA

5 References

1. NIST Special Publication 800-131A.

2. X.509 public key certificates version 3, http://tools.ietf.org/html/draft-igoe-secsh-x509v3-07

3. http://www.certicom.com/images/pdfs/ecc/ds-ecc-cu-102210.pdf

4. http://www.entrust.net/ecc-certs/index.htm

OpenADR 2.0b Profile Specification - 65 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

Note that a VTN or VEN may be configured to support any TLS version and cipher suite combi-
nation based on the needs of a specific deployment. However in the absence of changes to the
default configuration of the VTN or VEN, the behavior of the devices must be as noted above.

 System Registration Process 10.5
Registration is defined as the VTN becoming “aware” of the VEN, e.g., exchange of credential
and possibly other information so that the VTN can properly authenticate the VEN. Note that this
specifically does not include enrolling in DR programs. The OpenADR 2.0b profile includes a reg-
istration service, although specific deployments may elect to do some portions of the registration
process out of band.

 Certificate Fingerprints 10.5.1
VENs must facilitate registration by providing a “certificate fingerprint” which can be easily
transmitted out-of-band to the VTN. The fingerprint may then be used by the VTN to identify a
VEN when it first connects to the VTN.

The certificate fingerprint will be generated as follows:

1. Perform a SHA-256 hash on the bytes of the DER-encoded client certificate

2. Take the last 10 bytes (from the 32-byte SHA-256 hash), represented as pairs of hexa-
decimal digits, separated by the colon (ASCII 58) character.

This fingerprint may be generated by the common ‘openssl’ command line tool from a PEM certif-
icate as follows:

$ openssl x509 -in client_cert.pem -fingerprint -sha256
SHA256 Finger-
print=D8:40:F6:2B:9D:6D:91:E4:21:21:64:2B:A5:55:76:GB:9C:6C:6B:00:9B:B5:5E:71:FA:
E4:61:75:9C:EF:A4:D6

The last 29 characters of the SHA256 hash (5E:71:FA:E4:61:75:9C:EF:A4:D6) must be used as
the “certificate fingerprint.” This fingerprint must be printed or otherwise distributed with the VEN
so it can be transmitted out-of-band to the VTN during installation time.

The fingerprint could also be computed in python as follows:

import ssl, hashlib

bin_cert = ssl.PEM_cert_to_DER_cert(open('client_cert.pem').read())
sha_hash = hashlib.sha256(bin_cert).digest()
print ':'.join('%02X' % ord(c) for c in sha_hash[-10:])

 Implementing XML Signatures for OpenADR 2.0 Message Payloads 10.6
 Introduction to XML Signature 10.6.1

An XML signature uses public key cryptography to digitally sign portions of an XML document for
integrity protection of the signed portions of the XML document. A brief description of XML sign-
ing and signature verification is provided here for implementation guidance. The complete XML
Signature Specification is available at http://www.w3.org/Signature/.
A fundamental feature of the XML signature is the ability to sign individual portions of the XML
tree in the document. This is important when the integrity of certain parts of the XML tree needs
to be preserved, while the complete document may still be appended by different entities as re-

OpenADR 2.0b Profile Specification - 66 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

quired. XML signature can be applied to more than one type of resource like section of XML file,
XML encoded data, binary-encoded images, text, or character-encoded files.
XML signatures are of three types – i) Enveloped where the signed element being signed is a
parent and the signature element is a child; ii) Enveloping where the signature element is the
parent of the element being signed; and iii) Detached where the signature element and the
signed element do not have a parent child relationship. Detached signatures can reside in the
same XML document as the content being signed, essentially living as sibling element or they
can be in a different documenting that the content being signed.

For the “high security” profile in OpenADR, detached signatures with siblings are used.

 Components of XML Signatures 10.6.2
Reference URI: This element provides a reference to the resource that is being signed using a
URI.

Digest Value: This element contains the digest of the resource that is being signed.

Signature Value: This element contains the resource digest signed by the private key of the sign-
ing authority.

Key Info: The key info element contains the information of the key that should be used for signa-
ture verification. This contains information on the public key of the signing authority.

 Creating XML Signatures 10.6.3
The first step in creating XML signatures is to identify the resource that needs to be signed. For
OpenADR 2.0 specification, ‘Detached’ signatures living in the same XML document as sibling
element to the data object being signed must be used. The VTN and VEN devices should use the
cipher suites that are used for TLS connections. As such there will not be any need for support-
ing additional cipher suites for creating and verifying message digests. SHA-256 is mandatory for
creating message digests and X.509 must be used for public key certificates. Refer to [RFC3275]
for further details how to create XML signatures.

An example XML signature is shown in Figure 23.

OpenADR 2.0b Profile Specification - 67 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

Figure 23 XML signature example

The different fields of the XML signature are explained below. The <oadrPayload> is the root el-
ement for the XML document. It contains two children – <Signature> and <oadrSignedObject>.
<Signature> contains the signature element, where as the <oadrSignedObject> contains the
OpenADR payload that is being signed.

<Signature> element includes the entire XML signature. The <Reference> element contains the
URI pointing to the <oadrSignedObject> element. <DigestMethod> points to the algorithm for
creating the digest of the resource being signed. In the example, SHA-256 is used for creating
the message digest. <DigestValue> is the alpha-numeric value of the digest. The element
<SignedInfo> contains all these information and the Canonicalization Method that was used. Ca-
nonicalization is important to have the same verification of XML signatures with different textual
representations.
<KeyInfo> element contains the information about the public key of the signing authority that
should be used to verify the signature. It contains information including <SubjectName> and the
corresponding X.509 certificate of the signing authority that contains the public key.

<Object> element contains a list of <SignatureProperties>. An OpenADR implementation sup-
porting XML signatures must at least insert the <ReplayProtect> element as <SignatureProperty>.
The ReplayProtect element must contain the dateTime when the payload is sent to the other par-
ty (not when it is created), as well as a random nonce. Note that the ReplayProtect element was
part of an earlier version of the W3C “XML Signature Properties” document6, but has been re-

6 http://www.w3.org/2008/xmlsec/Drafts/xmldsig-properties/Overview.html

xml_sig_example.xml

<?xml version="1.0" encoding="UTF-8"?>
<oadr:oadrPayload>

<ds:Signature>
<ds:SignedInfo>

<ds:CanonicalizationMethod
Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315" />

<ds:SignatureMethod
Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha256" />

<ds:Reference URI="#signedObject">
<ds:DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256" />
<ds:DigestValue>5H8v6B/z+YMDBR61xKdUZVkCLvUnC/rVfEcrZ5IAFDY=</ds:DigestValue>

</ds:Reference>
<ds:Reference URI="#prop">

<ds:DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256" />
<ds:DigestValue>7H7U/}kg%yHHFDT7jb^*jvR80KHffdR%7hHFVdEttGJU</ds:DigestValue>

</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>UjBsR09EbGhjZ0dTQUxNQUFBUUNBRU1tQ1p0dU1GUXhEUzhi</ds:SignatureValue>
<ds:KeyInfo>

<ds:KeyName>key123</ds:KeyName>
</ds:KeyInfo>
<ds:Object Id="prop">

<ds:SignatureProperties xmlns:dsp="http://openadr.org/oadr-2.0b/2012/07/xmldsig-properties">
<ds:SignatureProperty>

<dsp:ReplayProtect>
<dsp:timestamp>2006-05-04T18:13:51.0</timestamp>
<dsp:nonce>nonce0</nonce>

</ds:ReplayProtect>
</ds:SignatureProperty>

</ds:SignatureProperties>
</ds:Object>

</ds:Signature>
<oadr:oadrSignedObject Id="signedObject">

<oadr:oadrDistributeEvent ei:schemaVersion="2.0b">
...

</oadr:oadrDistributeEvent>
</oadr:oadrSignedObject>

</oadr:oadrPayload>

Page 1

OpenADR 2.0b Profile Specification - 68 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

moved because of lack of interoperable implementations. OpenADR uses the same element but
in its own namespace.

Digest of the whole <SignedInfo> element is created and signed using the private key of the
signing authority.
The allowable algorithms for the signature method are: RSA-SHA256, and ECDSA-SHA256. The
allowable algorithm for the digest method is: SHA256. Refer to conformance rule 514 for details.

 Verifying XML Signatures 10.6.4
The following steps should be performed to verify an XML signature (refer to [RFC3275])

1. Create a digest of the <SignedInfo> element using the digest mechanism indicated in the
<DigestMethod> element (i.e., SHA-256). Verify the <SignatureValue> element using the
key pointed out in the <KeyInfo> element. If the verification value is the same as the di-
gest, the first verification step is complete.

2. Calculate the digest of the <oadrSignedObject> field and make sure the calculated di-

gest is the same as the value in the <DigestValue> field.

3. Verify if a <ReplayProtect> element is contained as <SignatureProperty>. Reject the

payload if the current date and time on the device differs from the value in the <Replay-
Protect> more than a predefined value. In addition, the nonce may be used for further
protection against replay attacks.

OpenADR 2.0b Profile Specification - 69 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

11 Conformance

 OpenADR 2.0 conformance statement 11.1
In order to claim conformance to this profile specification, a VTN, VEN or VTN/VEN combination
must conform to all statements made in this document as well as the [OpenADR 2.0 PICS] doc-
ument. Product variations can be found in the product matrix in Figure 1. Further, a product must
be tested at an authorized test service provider and undergo certification managed by the Open-
ADR Alliance.

 OpenADR 2.0b Profile Conformance Rules 11.2
 EiEvent – from 2.0a 11.2.1

Note that 2.0b devices must also conform to the A profile conformance rules listed in this section.
Some rules have a note “A Profile Only”; these apply only to 2.0b VTNs communicating with 2.0a
VENs.

Conformance

Rule
Requirement

1 VTN
The time, date, or date and time MUST be specified using [ISO8601] utc-
time (also called zulu time). Example: 2013-04-22T15:26:44.123Z
Note that fractional seconds are allowed by [ISO8601], and it is the respon-
sibility of the receiving device to truncate the fractional seconds if neces-
sary.

2 VTN, EiEvent Service, oadrDistributeEvent Payload
The uid element is REQUIRED for each eiEventSignal interval. Within a sin-
gle oadrDistributeEvent eiEventSignal, uid MUST be expressed as an inter-
val number with a base of 0 and an increment of 1 for each subsequent in-
terval.

3 VTN, EiEvent Service, oadrDistributeEvent Payload
oadrDistributeEvent priority element – This is the priority of this event rela-
tive to other events. The lower the number higher the priority. A value of
zero (0) indicates no priority, which is the lowest priority by default.

4 VTN, EiEvent Service, oadrDistributeEvent Payload
A new event MUST start with a modificationNumber of 0.

5 VTN, EiEvent Service, oadrDistributeEvent Payload
Each modification of the oadrDistributeEvent eiEvent object, excluding cre-
atedDateTime, eventStatus, and currentValue, MUST cause the modifica-
tionNumber to increment by 1.

Exception: An eventStatus change to “cancelled” MUST cause the modifica-
tion number to increment by 1.

6 VEN, EiEvent Service, oadrDistributeEvent Payload
The presence of any string except “false” in the oadrDistributeEvent
testEvent element MUST be treated as a trigger for a test event.

7
A Profile

VTN, EiEvent Service, oadrDistributeEvent Payload
The oadrDistributeEvent eiEvent object MUST contain only one event signal

OpenADR 2.0b Profile Specification - 70 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

Only and that signal MUST have a signalName of “SIMPLE” (in either upper or
lower case, i.e., “simple”).

8 VTN, EiEvent Service, oadrDistributeEvent Payload
oadrDistributeEvent eventSignal interval durations for a given event MUST
add up to eiEvent eiActivePeriod duration.

9 VTN, EiEvent Service, oadrDistributeEvent Payload
oadrDistributeEvent eiEventSignal’s with a signalName of “SIMPLE” MUST
use signalPayload values of 0=normal; 1=moderate; 2=high; 3=special.

10 VTN, EiEvent Service, oadrDistributeEvent Payload
The VTN MUST change the oadrDistributeEvent eventStatus to “cancelled”
when communicating an event cancellation to the VEN. Note that the modi-
ficationNumber is incremented by 1 when issuing a cancellation.

12 VEN, EiEvent Service, oadrCreatedEvent Payload
The VEN MUST respond with an oadrCreatedEvent to an event in oadrDis-
tributeEvent based upon the value in each event’s oadrResponseRequired
element as follows:

Always – The VEN MUST respond to the event with an oadrCreatedEvent
eventResponse. This includes unchanged, new, changed, and cancelled
events.

Never – The VEN MUST NOT respond to the event with a oadrCreatedEvent
eventResponse

Note that oadrCreatedEvent event responses SHOULD be returned in one
message, but MAY be returned in separate messages.

13 VTN, EiEvent Service, oadrDistributeEvent Payload
EventStatus MUST always transition from “far” to “near” to “active”. The
transition to NEAR occurs at the start of the x-eiRampUp period if defined. If
x-eiRampUp is not defined the transition will move from “far” to “active” at
the dtstart time.

14 VTN, EiEvent Service, oadrDistributeEvent Payload
If currentValue is included in the payload, it MUST be set to 0 (normal)
when the event status is not “active” for the SIMPLE signalName.

15 VTN, EiEvent Service, oadrDistributeEvent Payload
A list of events sent by VTN in an oadrDistributeEvent payload MUST be
ordered as follows:

1. “active” events have priority over pending events.

2. Within events with “active” event status, priority is determined by Priority
in the Event Descriptor.

3. Between “active” events with the same priority, the one with the earlier
start time has the higher priority.

4. Between pending (i.e., “far” or “near”) events the one with the earlier start

OpenADR 2.0b Profile Specification - 71 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

time has the higher priority

5. After processing rules 1-4, if Priority is still indeterminate within a set of
events AND if the VTN is responding to an oadrRequestEvent with replyLim-
it set to a value less than the number of pending or “active” events, the
VTN MUST maintain a fixed order between successive replies to oadrRe-
questEvent while the ordering remains indeterminate.

Note: A cancellation should be ordered according to whatever rules were
applied before the event was cancelled.

16 VTN, EiEvent Service, oadrDistributeEvent Payload
The VTN MUST recognize the state of the eiCreatedEvent optType element,
both optIn and optOut, except when a B profile VEN responds to
an event with oadrCreateOpt, in which case conformance rule 206 MUST
apply.

17 VTN, EiEvent Service, oadrDistributeEvent Payload
The VTN MUST recognize an asynchronous eiCreatedEvent optOut for a
previously acknowledged event, except when a B profile VEN responds to
an event with oadrCreateOpt, in which case conformance rule 206 MUST
apply.

18 VEN/VTN, EiEvent Service
The VEN/VTN MUST honor the following rules with regards to overlapping
active periods…

DR events with overlapping active periods may be issued, but only if they
are from different marketContexts and only if the programs have a priority
associated with them. DR events for programs with higher priorities super-
sede the events of programs with lower priorities. If two programs with over-
lapping events have the same priority then the program whose event was
activated first takes priority.

The behavior of a VEN is undefined with respect to the receipt on an over-
lapping event in the same market context. The VTN MUST NOT send over-
lapping events in the same market context, including events that could po-
tentially overlap a randomized event cancellation. Nothing in this rule should
preclude a VEN from opting into overlapping events in different market con-
texts.

19 VEN, EiEvent Service, oadrDistributeEvent Payload
If an oadrDistributeEvent payload has as mix of valid and invalid events, the
implementation MUST only respond to the relevant valid events and not re-
ject the entire message.

20 VTN, EiEvent Service, oadrDistributeEvent Payload
At any time, a VTN MAY change any element or attribute of a pending (i.e.,
“far” or “near”) or “active” event as long as it does not pertain to the past.

21 VEN/VTN, EiEvent Service, oadrDistributeEvent Payload
If venID, vtnID, or eventID is included in payloads, the receiving entity
MUST validate the ID values are as expected and generate an error if no ID
is present or an unexpected value is received.

OpenADR 2.0b Profile Specification - 72 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

Exception: A VEN MUST NOT generate an error upon receipt of a cancelled
event whose eventID is not previously known.

22 VEN, EiEvent Service, oadrDistributeEvent Payload
If no sub elements are present in oadrDistributeEvent eiTarget, the pre-
sumption is that the recipient is the intended target of the event. If multiple
criteria are present in eiTarget sub-elements, the values are OR’d together
to determine whether the VEN is a target for the event. However, the VENs
behavior with respect to responding to an event when it matches one of the
eiTarget criteria is implementation dependent.

23

VEN/VTN, EiEvent Service, oadrRequestEvent Payload
oadrRequestEvent MUST only be sent in VEN to VTN direction.

25 VTN, EiEvent Service, oadrCreatedEvent Payload
The following rules MUST be followed with respect to application level re-
sponses for multiple events in an oadrCreatedEvent:
1) If the oadrCreatedEvent:eiResponse indicates failure, there is no need to
examine each element in the eventResponses (eventResponses is not even
required to be part of the oadrCreatedEvent payload, as specified in rule
35).
2) If the oadrCreatedEvent:eiResponse indicates success, the VTN
SHOULD evaluate each eventResponse:responseCode to discover which
optType state and status codes the VEN recorded for each event.

27 VTN, EiEvent Service, oadrRequestEvent Payload
If a value is provided in the oadrRequestEvent replyLimit element, the VTN
MUST only return the number of events specified by the value in its oad-
rDistributeEvent response.

29 VTN, EiEvent Service, oadrDistributeEvent Payload
The oadrDistributeEvent currentValue, if included in the payload, for each
eiEvent eiEventSignal MUST accurately reflect the signalPayload value for
the active interval in an executing event.

30 VEN, EiEvent Service, oadrDistributeEvent Payload
The VEN MUST randomize the dtstart time of the event if a value is present
in the startafter element. Event completion times are determined by adding
the event duration to the randomized dtstart time. Modifications to an event
SHOULD maintain the same random offset, unless the startafter element
itself is modified.

31 VEN, EiEvent Service, oadrDistributeEvent Payload
The VEN MUST recognize and act upon values specified in the subelements
of activePeriod including:

• dtstart
• duration
• tolerance
• x-eiRampUp (positive and negative)
• x-eiRecovery (positive and negative)

OpenADR 2.0b Profile Specification - 73 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

Note: x-eiRampup and x-eiRecovery are not testable requirements.

32 VEN/VTN, EiEvent Service, oadrDistributeEvent Payload
The VEN MUST recognize and act upon values specified in the subelements
of intervals including:

• duration
• signalPayload

33 VEN/VTN

The implementation MUST provide an application layer error indication as a
result of the following conditions:

• Missing expected information (459)
• Payload not of expected type (459)
• ID not as expected (452)
• Illogical request – Old date on new event, durations do not add up

correctly, etc.

Note that a schema validation error will most likely cause a transport
rather than application layer error indication.

35 VEN, EiEvent Service, oadrCreatedEvent Payload
The eventResponses element in oadrCreatedEvent is REQUIRED, except
when an error condition is reported in eiResponse.

36 VEN, EiEvent Service, oadrCreatedEvent Payload
An event cancellation received by the VEN MUST be acknowledged with an
oadrCreatedEvent with the optType element set as follows, unless the oad-
rResponseRequired is set to “never”:
optIn = Confirm to cancellation
optOut = Cannot cancel

Note: Once an event cancellation is acknowledged by the VEN, the event
MUST NOT be included in subsequent oadrCreatedEvent payloads unless
the VTN includes this event in a subsequent oadrDistributeEvent payload.

37 VEN
A simple HTTP VEN implementation MUST support the PULL model and
MAY optionally also support push.

38 VTN
A simple HTTP VTN MUST support both a PUSH and PULL model.

40 VTN, EiEvent Service, oadrDistributeEvent Payload
The optional eiResponse object in oadrDistributeEvent MUST be included
when responding to oadrRequestEvent or to an oadrPoll.

41 VTN, EiEvent Service, oadrDistributeEvent Payload
The VTN MUST send a requestID value as part of the oadrDistributeEvent
payload.

OpenADR 2.0b Profile Specification - 74 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

Note: The requestID value is not required to be unique, and in fact may be
the same for all oadrDistributeEvent payloads. That there are two requestID
fields in oadrDistributeEvent. The field that must be populated with a re-
questID is located at oadrDistributeEvent:requestID.

42 VEN/VTN, EiEvent Service, oadrCreatedEvent Payload
A VEN receiving an oadrDistributeEvent eiEvent MUST use the received
requestID value in the EiCreatedEvent eventResponse when responding to
the event. This includes any and all subsequent EiCreatedEvent messages
that may be sent to change the opt status of the VEN. The eiRe-
sponse:requestID in oadrCreatedEvent MUST be left empty if the payload
contains eventResponses. The VTN MUST look inside each eventResponse
for the relevant requestID.

43 VEN, EiEvent Service, oadrDistributeEvent Payload
The VEN MUST NOT make any assumptions regarding the uniqueness of
requestID values received from the VTN in the oadrDistributePayload.

45 VEN/VTN
Messages sent between VENs and VTNs MUST NOT include a schemaLo-
cation attribute.

46 VEN/VTN
Optional elements do not need to be included in outbound payloads, but if
they are, the VEN or VTN receiving the payload MUST understand and act
upon those optional elements.

47 VEN/VTN, EiEvent Service, oadrDistributeEvent Payload
An event with an overall duration of 0 indicates an event with no defined
end time and will remain active until explicitly cancelled.

48 VEN/VTN
When a VTN or VEN receives schema compliant OpenADR payload that has
logical errors, the receiving device MUST provide an application layer error
indication of 4xx in the eiResponse element of the payload. The detailed
error message number is informational and not a requirement for response
to a specific scenario, unless otherwise stated in the conformance rules.

If the error is in an event contained in an oadrDistributeEvent payload and
there are otherwise no application errors in the oadrDistributeEvent, the
oadrCreatedResponse SHOULD set the eiResponse:responseCode to 200
and SHOULD report the status code and opt status for each event in the
eventResponse element of oadrCreatedEvent. If no logical error is detected
for an event, the status code is set to 200 and the opt status included in the
oadrResponse element.

The following logical errors MUST be detected by implementations

• VEN receives non-matching market context (462)
• VEN receives non-matching eiTarget (462)
• VEN receives unsupported signalName (460)

OpenADR 2.0b Profile Specification - 75 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

In case of a logical error for an event, optType is set to optOut.

When the VTN receives an oadrCreatedEvent with logical errors in one of
the eventResponses, it SHOULD set the eiResponse:responseCode in the
oadrResponse reply to:

• VTN receives non-matching eventID in at least one of the oadrResponses
in the oadrCreatedEvent (452)
• VTN receives mismatched modificationNumber in at least one of the oad-
rResponses in the oadrCreatedEvent (450)

In case there are multiple errors (e.g., one non-matching eventID and one
non-matching modificationNumber), any 4xx error code (e.g., 452) can be
used. When the VEN receives the oadrResponse, it could resend oadrCre-
atedEvents, one for each event instead several grouped into one oadrCre-
atedEvent.

50 VTN, EiEvent Service, oadrDistributeEvent Payload
In both the PUSH and PULL model, oadrDistributeEvent MUST contain all
existing events which have the eventStatus element set to either FAR,
NEAR, or ACTIVE. Events with an eventStatus of cancelled MUST be in-
cluded in the payload upon change to the modificationNumber and MAY be
included in subsequent payloads.

51 VEN/VTN
Implementations that support both PUSH and PULL models MAY operate in
a dual mode, exchanging messages using either model during any commu-
nication session.

52 VTN, EiEvent Service, oadrDistributeEvent Payload
If a VTN requests acknowledgment of a cancelled event with oadrRespons-
eRequired of always, the VTN MUST continue to send the cancelled event
to the VEN until the event is acknowledged, eventStatus transitions to the
complete state, or some well-defined number of retries is attempted.

53

VEN/VTN
VTNs and VENs that support simple HTTP mode MUST support the follow-
ing HTTP headers:

• Host
• Content-Length
• Content-Type of application/xml

56 VEN, EiEvent Service, oadrDistributeEvent Payload

If the VTN sends an oadrEvent with an eventID that the VEN is not aware
then the VEN SHOULD process the event and add it to its list of known
events.

57 VEN/VTN, EiEvent Service, oadrDistributeEvent Payload
If the VTN sends an oadrEvent with an eventID that the VEN is already

OpenADR 2.0b Profile Specification - 76 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

aware of, but with a higher modification number then the VEN should re-
place the previous event with the new one in its list of known events.

58 VEN, EiEvent Service, oadrDistributeEvent Payload
If the VTN sends an oadrEvent with an eventID that the VEN is already
aware of, but which has a lower modification number than one in which the
VEN is already aware then this is an error and the VEN SHOULD respond
with the appropriate error code (450). Note that this is true regardless of the
event state including cancelled.

59 VEN, EiEvent Service, oadrDistributeEvent Payload
If the VTN sends an oadrEvent object with the eventStatus set to cancelled
and has an eventID that the VEN is aware of then the VEN SHOULD cancel
the existing event and delete it from its list of known events.

60 VEN, EiEvent Service, oadrDistributeEvent, oadrCreatedEvent Payload
If the VTN sends an oadrEvent object with the eventStatus set to cancelled
and has an eventID that the VEN is not aware of then the VEN SHOULD
ignore the event since it is not currently in its list of known events, but still
MUST respond with the createdEvent if required to do so by oadrRespons-
eRequired.

61 VEN, EiEvent Service, oadrDistributeEvent Payload
If the VTN sends the oadrDistributeEvent payload and it does not contain an
event for which the VEN is aware (i.e., in its list of known events) then the
VEN MUST delete it from its list of known event (i.e., implied cancel).
Exception: A VEN that has an active event that cannot be immediately
stopped for operational reasons MAY leave the event in its data store until
the event expires or the event can be stopped.

62 VEN, EiEvent Service, oadrDistributeEvent, oadrCreatedEvent Payload
The VEN MUST process every oadrEvent event message (new, modified,
cancelled, etc.) that it receives from the VTN in an oadrDistributeEvent pay-
load and it MUST reply with a createdEvent message for every EiEvent
message in which the responseRequired is set to “always”. Furthermore if
the responseRequired is set to “never”, the VEN MUST NOT respond with a
createdEvent message. It is at the complete discretion of the VTN as to
whether responses are required from the VEN. Note that this rule is univer-
sal and applies to all scenarios including the following:

• The event is one in which the VEN is already aware.
• The event is being cancelled and the VEN did not even know it ex-

isted
• It does not matter how the EiEvent payloads were delivered, i.e.,

PUSH, PULL or as the result of being delivered in an ALL payload

63 VTN
The VTN MUST NOT include more than one venID in the oadrDistrib-
uteEvent eiTarget.

64
A Profile

VEN, EiEvent Service
A PULL VEN MUST respond to all received events before initiating another

OpenADR 2.0b Profile Specification - 77 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

Only polling cycle.

65 VEN, EiEvent Service, oadrDistributeEvent, oadrCreatedEvent Payload
When an event containing a randomization value in the startafter element is
cancelled, either explicitly or implicitly, the VEN MUST randomize its termi-
nation of the event. The randomization window SHOULD be between 0 and
a duration equal to the value specified in startafter.

66 VEN/VTN, EiEvent Service, oadrDistributeEvent, Payload

If a VTN sends an oadrDistributeEvent payload containing an event with a
startafter element with a value greater than zero, the VTN MUST continue to
include the event in oadrDistributeEvent payloads, even if the event is
complete, until current time is equal to dtstart plus duration plus startafter.
The receipt of an eventStatus equal to completed MUST NOT cause the
VEN to change its operational status with respect to executing the event.

67 VEN/VTN
VTN and VEN MUST support TLS 1.2. Legacy VENs and VTNs MAY use
TLS1.0 (or TLS1.1) for a grace period. After the grace period ends (refer to
the [OpenADR 2.0 Certificate Policy], devices only supporting TLS1.0 (or
TLS1.1) MUST be recertified (see section 10.4). The default cipher suite
selection MUST be as follows:

• The VEN client MUST offer at least at least one of the default cipher
suites listed below.

• The VEN server MUST support at least one of the default cipher
suites listed below and MUST select one of the default cipher suites
regardless of other cipher suites that may be offered by the VTN
client.

• The VTN client MUST offer both the default cipher suites listed
below.

• The VTN server MUST support both of the default cipher suites
listed below and MUST select one of listed the default cipher suites
regardless of other ciphers that may be offered by the VEN client.

Default cipher suites for TLS1.2:
• TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
• TLS_RSA_WITH_AES_128_CBC_SHA256

Cipher suites for legacy TLS1.0 and TLS1.1 devices:

• TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
• TLS_RSA_WITH_AES_128_CBC_SHA

Note that a VTN or VEN MAY be configured to support any TLS version and
cipher suite combination based on the needs of a specific deployment.
However in the absence of changes to the default configuration of the VTN
or VEN, the behavior of the devices MUST be as noted above.

OpenADR 2.0b Profile Specification - 78 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

68 VEN/VTN
Both VTNs and VENs MUST support client and server X.509v3 certificates.
A VTN MUST support both an ECC and RSA certificate. A VEN MUST
support either an RSA or ECC certificate and MAY support both. RSA
certificates MUST be signed with a minimum key length of 2048 bits. ECC
certificates MUST be signed with a minimum key length of 224 bits. ECC
Hybrid certificates MUST be signed with a 256 bit key signed with an RSA
2048 bit key.

69
A Profile

Only

VTN/VEN, EiEvent Service, oadrDistributeEvent, Payload
The signalType element contained in a SIMPLE signal MAY be any of the
supported enumerated values. The value used is informational and provides
a hint as to the nature of the relative values specified in the signalPayload.

OpenADR 2.0b Profile Specification - 79 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

 EiEvent – Additional 2.0b Conformance Rules 11.2.2

Conform-
ance Rule

Requirement

100 VTN, EiEvent Service, oadrDistributeEvent Payload
For both eiEventSignal and eiEventBaseline the following substitution group
items MUST be used:

• streamPayloadBase = signalPayload
• payloadBase = payloadFloat

The number of signalPayload elements in each interval MUST be equal to 1.

101 VTN, EiEvent Service, oadrDistributeEvent Payload
The uid element is REQUIRED for each eiEventBaseline interval. Within a sin-
gle eiEventBaseline, uid MUST be expressed as an interval number with a
base of 0 and an increment of 1 for each subsequent interval.

102 VTN, EiEvent Service, oadrDistributeEvent Payload
For both eiEventSignal and eiEventBaseline, the interval duration element
must appear in each interval and the sum of interval durations MUST add up to
overall duration element specified in eiActivePeriod:properties:duration for
event signals and eiEventSignal:eiEventBaseline:duration for baselines.

103 VTN, EiEvent Service, oadrDistributeEvent Payload
For both eiEventSignal and eiEventBaseline, the dtstart element MUST NOT
be included in the interval specification.

104

VTN, EiEvent Service, oadrDistributeEvent Payload
If the signalName is one of the well-known alliance signals, then signalType,
Units, and allows values MUST be as shown in Table 1 (in section 8.2.2).

B profile VTNs MUST be capable of being configured to send events with
SIMPLE signals.

105

VTN, EiEvent Service, oadrDistributeEvent Payload
The eiNotification element MUST be included as a sub element of activePeri-
od. Note that this element is REQUIRED in the A profile, but OPTIONAL in the
B profile, so this conformance rule simply ensures it is included in B profile
events.

106 VTN, EiEvent Service, oadrDistributeEvent Payload
B profile oadrDistributeEvent eiEvent’s MAY contain the “SIMPLE” event sig-
nal in addition to other signals, however the relationship between the SIMPLE
signal and other signals in the event are deployment specific.

OpenADR 2.0b Profile Specification - 80 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

107

VTN, EiEvent Service, oadrDistributeEvent Payload
If multiple signals are present for an event, each signal MUST have a signalID
value that is unique within the scope of the event.

108 VTN, EiEvent Service, oadrDistributeEvent Payload
If one or more resourceIDs are present as sub-elements of eiEventBaseline,
the baseline represents the aggregate of the listed resources. No assumptions
should be made regarding the relationship between the eiEvent:eiTarget object
and the source of the baseline data.

109

VEN, EiEvent Service, oadrDistributeEvent Payload
A VEN MUST generate an oadrCreatedEvent application level 460 error if
any requested signal in an event cannot be supported. Supported means that
the requested combination of signalType and Unit cannot be currently support-
ed.

110

VTN, EiEvent Service, oadrDistributeEvent payload
The value of currentValue when an event is not active is undefined for event
signals other than SIMPLE. See conformance rule 14 for the currentValue re-
quirements for the SIMPLE signal.

111

VTN/VEN, EiEvent Service, oadrDistributeEvent payload
eiTarget is defined at both the event and signal level of the oadrDistrib-
uteEvent payload. At the signal level, only the endDeviceAsset may be used
as an eiTarget sub-element. The allowable values for the eiEventSig-
nal:eiTarget:endDeviceAsset:mrid are as follows:

• Thermostat
• Strip_Heater
• Baseboard_Heater
• Water_Heater
• Pool_Pump
• Sauna
• Hot_tub
• Smart_Appliance
• Irrigation_Pump
• Managed_Commercial_and_Industrial_Loads
• Simple_Residential_On_Off_Loads
• Exterior_Lighting
• Interior_Lighting
• Electric_Vehicle
• Generation_Systems
• Load_Control_Switch
• Smart_Inverter
• EVSE
• RESU
• Energy_Management_System
• Smart_Energy_Module
• Storage
• x-{user Defined}

If present, eiEventSignal:eiTarget:endDeviceAsset:mrid values are AND’d with
any event level eiTarget values to determine the intended target for the specif-

OpenADR 2.0b Profile Specification - 81 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

ic signal.

If no eiTarget:endDeviceAsset sub-element is present in the eiTarget, the
eiEventSignal:eiTarget element MUST be omitted from the payload.

112

VEN, EiEvent Service, oadrDistributeEvent payload
If a VEN receives an event where the nature of the signal type causes the VEN
not to be able to resolve the intended resource apply the event to, the VEN
MUST return a 469 error response to the VTN.

113

VTN, EiEvent Service, oadrDistributeEvent payload
The event currentValue element is optional for the B service, but MUST be in-
cluded in payloads sent to A Profile VENs

114 VEN, EiEvent Service, oadrDistribute payload
A VEN MUST have reasonably synchronized clocks with the VTN. It is up to
the deployment to defined the acceptable skew. It is out of scope of OpenADR
how to synchronize clocks; mechanisms such as NTP may be used.

When a 2.0b VEN receives an event, it MAY ignore the eventStatus contained
in the event (with the exception of “cancelled”) and calculate the eventStatus
based on the current time, event start time, interval duration etc.

115 VTN, EiEvent Service, oadrDistribute payload
createdDateTime MUST be recreated each time any element of the event pay-
load is changed (e.g., when the event is hold in a buffer in PULL mode).

The eventStatus MUST be updated before sending out the event when a VTN
receives an oadrRequestEvent. It MAY update the status when it receives an
oadrPoll, but this is not required, as the 2.0b VEN can calculate the eventSta-
tus automatically.

116 VTN/VEN, EiEvent Service, oadrDistributeEvent, Payload
The signalType element contained in a SIMPLE signal MUST be “level” (for the
2.0b profile; refer to rule 69 for 2.0a profile VENs).

 EiOpt 11.2.3

OpenADR 2.0b Profile Specification - 82 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

200 VEN/VTN, EiOpt Service, oadrCreateOpt Payload
oadrCreateOpt payload vavailability properties MUST NOT include the follow-
ing elements:

• tolerance
• eiRampUp
• eiRecovery
• eiNotification

201

VEN/VTN, EiOpt Service, oadrCreateOpt Payload
The following aspects of an opt schedule are program specific:

• The type of schedules that a VEN is allowed to issue: optIn, optOut, or
both

• The default opt state (optIn or optOut) for time periods not defined by
either an opt or Avail schedule (if defined)

• Whether optIn or optOut schedules have precedence in the situation
where they have overlapping time frames

• Whether overlapping time frames are allowed within the same schedule
(optIn or optOut) and if they are not allowed, the expected exception
handling behavior

• Whether the VTN is allowed to send events during an optOut period

202

VEN, EiOpt Service, oadrCreateOpt Payload
If the oadrCreateOpt eiTarget is empty, then the opt schedule applies to all of
the resources associated with that VEN. If eiTarget sub elements are defined,
these sub elements MUST be OR’d together to define a subset of the VENs
resources that the opt schedule must apply. Note that the VEN MAY send mul-
tiple opt schedules for different sets of resources identified by the eiTarget el-
ement.

203 VTN, EiOpt Service, oadrCreateOpt Payload
A new opt schedule (optIn or optOut) sent via oadrCreateOpt MUST be han-
dled by the VTN as follows when a previously sent opt schedule is still active:

• If only the venID is specified in eiTarget, the previous opt schedule with
respect to future availability is replaced in its entirety by the new opt
schedule for all resources associated with the VEN.

• If sub elements are specified in eiTarget in addition to the venID, then
an opt schedule MUST be generated for these resources superseding
any previously defined schedules for specific resources.

• Previously defined opt schedules for resources that are not specified
by eiTarget MUST remain unchanged.

204 VEN, EiOpt Service, oadrCreateOpt Payload

The VEN MUST send an optID value as part of the oadrCreateOpt payload,
however the optID value is not required to be unique, and in fact MAY be the
same for all oadrCreateOpt payloads. Note that if the same optID is used
defining opt schedules for multiple sets of resources, a cancelation referencing
the optID MUST cancel the opt schedule for all the resources.

205 VTN, EiOpt Service, oadrCreateOpt Payload
If marketContext is present in the oadrCreateOpt payload, the opt schedule
MUST only apply to the VENs availability with respect to events generated
within the specified marketContext.

206 VTN/VEN, EiOpt Service, oadrCreateOpt Payload

OpenADR 2.0b Profile Specification - 83 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

A VEN responds with an EiEvent oadrCreatedEvent payload in response to an
oadrDistributeEvent if oadrResponseRequired is set to “always”. However, fur-
ther qualifications of the optType state for the event can be accomplished by
sending either an oadrCreatedEvent or an EiOpt oadrCreateOpt payload with
the eventID specified provided that the oadrResponseRequired element was
set to ‘always’ when the event was last received from the VTN (i.e., the VEN is
not allowed to send an oadrCreatedEvent or oadrCreateOpt for that event to
the VTN as an application layer response beyond the HTTP 200 in PUSH
mode).

Once oadrCreateOpt is used to qualify the optType state for the event, it
MUST take precedence and subsequent changes to the opt state by oadrCre-
atedEvent MUST be ignored. This rule is reset upon receipt of the next oad-
rDistributeEvent, which MUST be responded to with an oadrCreatedEvent pro-
vided the oadrResponse required is set to “always”. Note that oadrCreateOpt
may not be sent to qualify an event if oadrResponseRequired is set to “never”
in the most recently received oadrDistributeEvent.

If oadrCreateOpt is used to modify the opt state of a pending or active event,
the following rules MUST apply with regards to the eiTarget and oadrDe-
viceClass targeting elements:

• If no target is present in the oadrCreateOpt:eiTarget or if the only tar-
get is the venID, then all resources associated with the qualifiedEvent
MUST have its opt state altered.

• If the oadrCreateOpt:eiTarget further qualifies any resources of the
VEN for the given qualifiedEvent (in addition to the implicitly or explicit-
ly targeted VEN), the included resources MUST be a subset of the re-
sources targeted in the qualifiedEvent, and the opt state will only be al-
tered for the targeted subset.

• If the VEN includes one or more targets in the oadrCreateOpt:eiTarget
payload that are not part of the qualifiedEvent, the VTN MUST gener-
ate a 4xx error in its oadrCreatedOpt:eiResponse.

• The VTN MAY respond with a 4xx error in the oadrCreatedOpt re-
sponse if it does not accept the requested opt state changes for the
specified target resources.

Note that the VEN MAY send multiple oadrCreateOpt payloads with eventID
specified for different sets of resources identified by the eiTarget element.

When eventID is specified in oadrCreateOpt, the VEN MUST NOT include a
vavailablity or marketContext in the payload. When eventID is not specified in
oadrCreateOpt, the VEN MUST include a vavailability and MAY include a mar-
ketContext in the payload.

Note that oadrCreateOpt with an eventID specified MAY also include oadrDe-
viceClass to further qualify the resources targeted. Resolution of the targeted
resources SHOULD follow conformance rule 209.

OpenADR 2.0b Profile Specification - 84 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

207 VTN/VEN, EiOpt Service, oadrCreateOpt Payload
Although requestID is a mandatory payload element for oadrCreateOpt and
oadrCancelOpt, it MAY be left as an empty string. However, if a value is speci-
fied for requestID, the VTN MUST return that value in its oadrCreatedOpt or
oadrCanceledOpt payload.

208 VTN/VEN, EiOpt Service, IDs
The following ID’s SHOULD be validated by the VTN receiving the payload. If
the ID does not match the expected ID, the device SHOULD include a 452 er-
ror in eiResponse.

• venID
• optID

209 VEN/VTN, EiOpt Service, oadrCreateOpt Payload

The oadrCreateOpt:oadrDeviceClass element, if present in a payload, MUST
contain only the endDeviceAsset sub-element whose values MUST conform to
the list of device classes shown in conformance rule 111.

If no oadrCreateOpt:oadrDeviceClass:endDeviceAsset sub-element is present
in the oadrCreateOpt, the oadrCreateOpt:oadrDeviceClass element MUST be
omitted from the payload.

The device classes specified in oadrDeviceClass SHOULD be AND’d with the
resource targets defined by oadrCreateOpt:eiTarget and marketContext (Rule
205), to determine the resources whose availability is impacted by this opt
schedule.

210 VEN/VTN, oadrCreateOpt Payload
If an opt availability schedule uses a duration of zero it MUST be treated as an
open ended opt state.

211 VEN/VTN, oadrCancelOpt
A VEN MUST NOT use oadrCancelOpt with an optID matching that of a
oadrCreateOpt used to qualify an active or pending event. An opt cancellation
in this context would be illogical.

VTN MUST NOT generate an error if it receives a cancellation for an opt
schedule that has been superseded by a more recent opt schedule

OpenADR 2.0b Profile Specification - 85 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

 EiReport 11.2.4

300

VEN/VTN, EiReport Service
An alliance report profile is a subset of all the possible oadrReport object
schema elements that define the characteristics (data points) of a specific type
of report (history and telemetry usage, telemetry status).

The Metadata report defines the characteristics that a particular implementa-
tion is capable of reporting. This MUST be a subset of the characteristics de-
fined by a well-known alliance report profile.

A report request (oadrReportRequest object) defines the specific characteris-
tics that an implementation would like to receive in a report. This list of charac-
teristics MUST be a subset of the characteristics defined in the metadata re-
port.

A non-Metadata report (oadrReport object) MUST contain values for all the
characteristics requested in the report request.

301 VEN/VTN, EiReport Service
Implementations MUST at a minimum support the following payload interac-
tions even if the implementation does not have any reportable data:

• Send oadrRegisterReport payload on power up (after initial registra-
tion), reset, or re-registration if interaction pattern allows

• Send oadrCreatedReport payload in response to an oadrCreateReport
payload requesting a Metadata report

• Send oadrRegisterReport payload containing a Metadata report should
an oadrCreateReport payload request Metadata reports.

In each case where the implementation does not have any reportable data, the
oadrReport object MUST be omitted from the payloads noted above.

302 VEN/VTN, EiReport Service
All reports are the aggregate of the resources defined in the Metadata report
element reportDataSource, filtered by the optional inclusion of a marketCon-
text in the Metadata report characteristics. If multiple target types are specified
in reportDataSource, the resources targeted by these types are OR’d together.

303 VEN/VTN, EiReport Service
Although requestID element is a mandatory payload element for request pay-
loads, it MAY be left as an empty string. However, if a value is specified for
requestID in the request payload, the responding implementation MUST return
that value in its response payload.

304 VEN/VTN, EiReport Service, IDs
The following IDs SHOULD be validated by the implementations receiving the
payload. If the ID does not match the expected ID, the device SHOULD include
a 452 error in the eiResponse payload.

• venID
• vtnID
• rID
• reportRequestID
• reportSpecifierID

OpenADR 2.0b Profile Specification - 86 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

305

VEN/VTN, EiReport Service, Metadata oadrReport Object
Payloads containing a Metadata report that describe reporting capabilities
MUST include the following optional payload elements:

• reportDescription
• reportDescription:itemBase substitution group (Units) as indicated in

conformance rule 331

For payloads containing a Metadata report that depicts that no reporting capa-
bilities are supported, the oadrReport object MUST be omitted.

Payloads containing a Metadata report MUST NOT include the following op-
tional payload elements:

• intervals
• dtstart
• eiReportID

306 VEN/VTN, EiReport Service, Metadata oadrReport Object

An implementation (VEN or VTN) sending a payload containing a Metadata
report MUST supply all of its reporting capabilities.

An implementation receiving a Metadata report MUST use this report to re-
place any previously received Metadata reporting capabilities. It MUST also
implicitly cancel all previously scheduled reports, except for periodic requests
for metadata reports, which MUST be explicitly cancelled.

If implementations receiving a Metadata report wish to continue to receive a
previously requested report(s), it MUST send a new report request after the
receipt of the Metadata report.

307 VEN/VTN, EiReport Service, Metadata oadrReport Object
The Metadata oadrReportDescription:reportSubject element, if present in a
payload, MUST contain only the endDeviceAsset sub-element whose values
MUST conform to the list of device classes shown in conformance rule 111.

If no oadrReportDescription:reportSubject:endDeviceAsset sub-element is pre-
sent in the oadrReportDescription, the oadrReportDescription:reportSubject
element MUST be omitted from the payload.

The device classes specified in reportSubject SHOULD be AND’d with the re-
source targets defined by reportDataSource and marketContext (Rule 302), to
determine the specific target whose data will be aggregated for the report.

308 VEN/VTN, EiReport Service, Metadata oadrReport Object
All reportSpecifierID element values MUST be unique within a specific Metada-
ta report.

If a reportDescription in the Metadata report has a reportName element that
contains one of the well known alliance report profile names, the data points
characteristics and allowable values MUST conform to the table shown in con-
formance rule 331.

All rID element values MUST be unique within a specific reportSpecifierID.
When requesting a Metadata report by sending an oadrCreateReport, rID
MUST be set to 0. The receiving party of the oadrCreateReport requesting a

OpenADR 2.0b Profile Specification - 87 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

Metadata report, MUST ignore the rID value.

309 VEN/VTN, EiReport, Metadata report – Power Up and Reset
Upon power-up or after a system reset (followed by an initial registration)
PUSH and PULL implementations of both VTN and VEN MUST send an oad-
rRegisterReport payload (i.e., Metadata reports) to the other party prior to ini-
tiating other non-registration service operations.

311 VEN/VTN, EiReport Service, Metadata oadrReport Object
The oadrRegisterReport.oadrReport.reportRequestID element in each con-
tained metadata report MUST be set to zero. If the oadrRegisterReport pay-
load is being sent to as the result of a oadrCreateReport request, the optional
oadrRegisterReport.reportRequestID element must be present with a value
that matches the reportRequestID used when the request was made. Other-
wise, oadrRegisterReport.reportRequestID MUST NOT be included in the oad-
rRegisterReport payload.

OpenADR 2.0b Profile Specification - 88 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

312

VEN/VTN, EiReport Service, Metadata oadrReport Object
oadrReport:duration element communicates the amount of history that can be
buffered. This element MUST be included in Metadata reports. Since duration
is a time parameter the assumption is that the implementation can store
enough data at the fastest supported sampling rate (oad-
rSamplingRate:oadrMinPeriod) for that duration of time.

The oadrSamplingRate:oadrMaxPeriod MUST NOT be larger than the duration
value noted above.

313 VEN/VTN, EiReport Service, Non-Metadata oadrReport Object
Payloads containing a Non-Metadata report MUST include the following op-
tional payload elements:

• dtstart
• Intervals
• reportName – the same value as used as the metadata report from

which the report is derived, except for without the METADATA prefix.

Payloads containing a Non-Metadata report MUST NOT include the following
optional payload elements:

• oadrReportDescription

314 VEN/VTN, EiReport Service, Non-Metadata oadrReport Object
oadrReport:dtstart element is the start time of the overall report and is inherit-
ed by the first interval in the report. If both the oadrReport:dtstart element and
interval dtstart element values are present in the payload, then oadrRe-
port:dtstart element MUST equal the dtstart element value of the first interval.

If one interval (oadrReport:intervals:interval) contains a dtstart element, all in-
tervals MUST contain a dtstart element.

Each interval MUST have an effective dtstart time, either inherited from oad-
rReport:dtstart or specified as part of the interval dtstart element.

315 VEN/VTN, EiReport Service, Non-Metadata oadrReport Object
The oadrReport:duration element is the duration of the entire report and if in-
cluded MUST reflect the time period beginning of the first interval and the end
of the last interval included in the report.
If oadrReport:intervals:interval:duration element is absent from the payload,
then the interval data contains data points that are bound to a specific point in
time as opposed to a span of time.

If one interval (oadrReport:intervals:interval) contains a duration element, all
intervals MUST contain a duration element.

If intervals do not contain dtstart elements and there is more than one interval,
duration MUST be specified in oadrReport:intervals:interval:duration.

316

VEN/VTN, EiReport Service, Non-Metadata oadrReport Object
The uid element is required in each interval if dtstart is not part of the interval
specification. Within a single oadrReport object, when required, uid MUST be
expressed as an interval number with a base of 0 and an increment of 1 for
each subsequent interval. Exception: Green Button Reports are not required to
have a uid element.

OpenADR 2.0b Profile Specification - 89 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

317

VEN/VTN, EiReport Service, Non-Metadata oadrReportRequest Object
The reportSpecifier:granularity element value specified in the report request
defines the requested interval reporting frequency. Example: Telemetry report
with a granularity of 10 minutes with a reportBackDuration of 60 minutes would
result in a report with 6 intervals. The requested granularity MUST NOT be
less than oadrSamplingRate:oadrMinPeriod, if specified in the metadata re-
port.

If reportSpecifier:granularity is zero then the requested data SHOULD be in-
cluded in a report only when it changes from the previous value and not at
regular intervals, while reports are to be sent at regular interval defined by re-
portBackDuration. In no case will the duration between subsequent values in a
report be less than oadrSamplingRate:oadrMinPeriod, even if they are being
reported only on change. In case the requested data has not changed since
the last time a report has been sent out, the oadrDataQualityType MUST be
set to “No New Value - Previous Value Used”. In case reportBackDuration is
set to zero in the same report request, regardless of whether granularity is ze-
ro or not, the expected behavior is the one defined in Conformance Rule 324.

For all history reports (HISTORY_XXX), granularity MUST be set to 0 to signify
that the data SHOULD be reported at whatever granularity it was recorded.

318

VEN/VTN, EiReport Service, Non-Metadata oadrReport Object
If an implementation has no valid data for a data point which was included in
its Metadata report and it has been asked to report this value via a report re-
quest, the implementation MUST include a placeholder value in the report and
set the intervals:interval:oadrReportPayload:dataQuality element to one of the
“Quality Bad” enumerated values.

319 VEN/VTN, EiReport Service, Non-Metadata oadrReport Object
If included in a payload, the intervals:interval:oadrReportPayload:accuracy el-
ement MUST be in same units as the payloadFloat value for the Interval. When
present with Confidence, indicates the likely variability of the prediction. This
rule is not applicable if the payloadResourceStatus is used to communicate the
payload value.

321 VEN/VTN, EiReport Service, oadrReportRequest Object
Payloads containing the oadrReportRequest object MUST NOT include the fol-
lowing optional element:

• reportSpecifier:reportInterval:properties:tolerance
• reportSpecifier:reportInterval:properties:eiNotification
• reportSpecifier:reportInterval:properties:eiReampUp
• reportSpecifier:reportInterval:properties:eiRecovery
• reportSpecifier:specifierPayload:itembase

322 VEN/VTN, EiReport Service, oadrReportRequest object

The reportRequestID element value MUST be unique within the scope of the
VEN/VTN.

OpenADR 2.0b Profile Specification - 90 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

324 VEN/VTN, EiReport Service, oadrReportRequest Object

The reportSpecifier:reportBackDuration element specifies how frequently the
report should be sent. If reportBackDuration is 0, then the report MUST be
sent immediately and only once using the oadrUpdateReport payload. History
reports MUST set reportBackDuration to 0. For Telemetry reports with a re-
portBackDuration of 0, the granularity value MUST be ignored and only one
interval of data for each data point MUST be returned in the report.

If the reportSpecifier:reportBackDuration element is non-zero, the report MUST
be delivered periodically using the oadrUpdateReport payload. Both Metadata
and non-Metadata reports MAY be delivered periodically.

HISTORY_USAGE and periodic TELEMETRY_USAGE and TELEME-
TRY_STATUS reports MUST specify values for reportSpecifier:reportInterval
dtstart and duration sub elements. One-off telemetry reports with point data do
not require these elements and they MUST be ignored if included in the report
request payload.

325 VEN/VTN, EiReport Service, oadrReportRequest Object

For TELEMETRY_XXX reports the reportSpecifi-
er:reportInterval:properties:dtstart element value indicates when the first in a
series of one or more reports must begin.

The reportSpecifier:reportInterval:properties:duration element value indicates
the time span from the dtstart time that this report should cover.

For all ongoing telemetry reports (TELEMERY_XXX), this duration may be in
the future and once this time span has expired the report SHOULD no longer
be generated. If reportSpecifier:reportInterval:properties:duration value is 0
then the report MUST be generated indefinitely.

For all history reports (HISTORY_XXX), this duration is in the PAST and re-
flects the historical data requested. If this value is 0 then the report MUST in-
clude all the history from dtstart time.

327 VEN/VTN, EiReport Service, oadrReportRequest Object
Payloads containing the oadrReportRequest object MUST use the well-known
string “METADATA” as the reportSpecifierID element value to request a
Metadata report.

328

VEN/VTN, EiReport Service, oadrUpdatedReport Payload
The oadrUpdatedReport payload can contain oadrCancelReport object to ena-
ble the implementation receiving the report to cancel a report as part of its re-
sponse. The reportRequestIDs that appear in the oadrCancelReport object
MUST be a subset of the reportRequestIDs from the oadrUpdateReport that is
being responded to.

329

VEN/VTN, EiReport, oadrCanceledReport and oadrCreatedReport
oadrPendingReports element MUST contain a list of reportRequestID element
values that includes all reports that are scheduled for future delivery.

330 VEN/VTN, EiReport, oadrReport

OpenADR 2.0b Profile Specification - 91 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

The rID element used in referencing data points is defined as a string in the
OpenADR Alliance schema. The Energy Interoperation schema restricts the
use of rID to three numeric digits. Implementers not concerned with using de-
scriptive rID values MAY wish to stay within the bounds of the Energy Interop-
eration restrictions.

331 VEN/VTN, EiReport, oadrReport
The OpenADR alliance has defined a number of well-known reports. These
reports are identified by the well-known names shown under the reportName
column in the table below. When the well-known report names are used as
part of the oadrRegisterReport, they MUST be prefixed with “METADATA_”
and the values shown in the table MUST be used for the specified report.

reportName reportType Units readingType streamPay-
loadBase

payloadBase
TELEME-

TRY_UASGE
usage power-

Real
ener-

gyReal

Direct Read oadrRe-
portPayload
payloadFloat

TELEME-
TRY_STATUS

x-
re-

sourceSta-
tus

None x-
notApplicable

oadrRe-
portPayload

oadrPayload-
ResourceSta-

tus
HISTO-

RY_USAGE
usage power-

Real
ener-

gyReal

Direct Read oadrRe-
portPayload
payloadFloat

HISTO-
RY_GREENBUT

TON

usage oadrGB-
DataDesc

ription

x-
notApplicable

oadrGBPay-
load
n/a

Users MAY define their own custom reports by defining a reportName that is
unique to their deployment and by using any of the schema supported values
to define the report.

333

VEN, EiReport Service, Metadata oadrReport Object
The reportDescription:oadrSamplingRate element is REQUIRED for any of the
telemetry reports (TELEMETRY_XXX).

334

VEN, EiReport Service, TELEMERTY_STATUS reports
TELEMETRY_STATUS reports do not explicitly list a Unit in their metadata
specification. VENs MUST include each of the following optional oadrPayload-
ResourceStatus sub-elements in TELEMETRY_STATUS reports if appropriate
for the targeted resource.

• oadrLoadControlState :oadrCapacity
• oadrLoadControlState :oadrLevelOffset
• oadrLoadControlState :oadrPercentOffset
• oadrLoadControlState :oadrSetPoint

OpenADR 2.0b Profile Specification - 92 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

All intervals MUST have the same set of oadrLoadControlState child elements
in a given report.

The LoadControlState attributes are meant to mirror the LOAD_CONTROL
signal attributes meaning that for each LOAD_CONTROL signal type there is a
corresponding attribute in the LoadControlState of a report. Their intended use
is to enable a VEN to report on its load control state that corresponds to a
LOAD_CONTROL signal that might be sent to a VEN. Such reports can be
used to signify the VEN’s current LOAD_CONTROL state and might be used
by the VTN to determine how sending a LOAD_CONTROL signal to the VEN
will affect the VEN. It can also be used by the VTN as a means to verify if pre-
viously sent LOAD_CONTROL signals have been effected desired changes in
the VEN. This is analogous to the correspondence between LOAD_DISPATCH
signals and usage reports from VEN.

335 VEN/VTN, EiReport Service, oadrUpdatedReport
A report cancellation MAY be included in the oadrUpdatedReport response. If
the other party continues to send reports after this cancellation, the party re-
questing the cancellation MUST use oadrCancelReport to rerequest the can-
cellation.

336 VEN/VTN, EiReport Service, oadrCanceledReport
An oadrCancelReport MAY include multiple reportRequestID values. If the re-
ceiving party cannot successfully cancel all the reports listed or does not rec-
ognize one of the included reportRequestID values, it MUST return a 4xx error
in the responseCode element of oadrCanceledReport.

337

VEN/VTN, EiReport Service
If an implementation offers a TELEMETRY_USAGE report that contains inter-
val data points (representing a value accumulated over time), the implementa-
tion MUST sample this data periodically such that it can respond to a one-shot
report request immediately with the most recent sample it has in its buffer. If
the metadata report for the telemetry report offered a range of sampling fre-
quencies, the report MUST include the interval duration in the one-shot interval
report.

338 VEN/VTN, EiReport Service, oadrReportRequest object
The reportSpecifier:specifierPayload:readingType values MUST be set to x-
notApplicable. The readingType element is required by the EI schema in this
location, but is not functionally used by OpenADR.

339 VEN/VTN, EiReport Service
eiReportID is a unique identifier for a specific instance of a report. It is not
used by OpenADR and SHOULD be ignored by VTN/VENs.

340 VEN/VTN, EiReport Service
If a source party requests more data from the target party in an
oadrReportRequest (e.g., based on the requested duration), the target party
MUST return an application error code 454 in an
oadrCreatedReport:eiResponse.

341 VEN/VTN, EiReport Service
oadrCreateReport:reportInterval:dtstart MUST represent the most recent
sample desired. The first interval in the oadrUpdateReport MUST represent the

OpenADR 2.0b Profile Specification - 93 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

most recent sample requested.

342 VEN/VTN, EiReport Service
The following combinations of dtstart and duration in an oadrUpdateReport in-
tervals MUST NOT be used (otherwise an implementation would have to derive
sample time for point data or the time component of interval data):

1) Interval data with just dtstart values
2) Point data with just duration values

3) Point data with dtstart and duration values

343 VEN/VTN, EiReport Service
If none of reportDataSource, reportSubject, and marketContext is present in a
metadata report, the source of the report applies to all resources associated
with the VTN or VEN sending the metadata report.

 EiRegisterParty 11.2.5

400

VTN/VEN, EiRegisterParty Service, IDs
The following ID’s SHOULD be validated by the implementations receiving the
payload. If the ID does not match the expected ID, the device SHOULD include
a 452 error in eiResponse.

• venID
• vtnID
• registrationID

401

VEN/VTN, EiRegisterParty, oadrCreatePartyRegistration
oadrQueryRegistration and oadrCreatePartyRegistration MUST only be used in
the VEN to VTN direction.
oadrRequestReregistration MUST only be used in the VTN to VEN direction.
oadrCancelPartyRegistration MAY be used in either the VEN to VTN or VTN to
VEN direction.

A VEN whose registration has been cancelled MAY attempt to initiate a new
registration at a deployment specific interval. An unregistered VEN that is
powered up or reset MUST attempt to initiate a registration if appropriately
configured to communicate with the VTN.

OpenADR 2.0b Profile Specification - 94 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

402 VEN/VTN, EiRegisterParty, oadrCreatePartyRegistration

oadrCreatePartyRegistration MUST include the following payload elements:

• If the oadrTransportName is simpleHTTP, then oadrHttpPullModel
MUST be set to true or false

• If oadrHttpPullModel is set to false, indicating a HTTP PUSH exchange
model, the oadrTransportAddress MUST be included

• registrationID – when reregistering only
• venID – when reregistering. If the venID is included in the initial regis-

tration payload, the assumption shall be that the VEN has been precon-
figured with this value and the VTN SHOULD validate the venID just as
it would any other payload with a venID

oadrCreatePartyRegistration MUST NOT include the following payload ele-
ments:

• registrationID – for a new registration

403

VEN/VTN, EiRegisterParty, oadrCreatedPartyRegistration
When responding to an oadrCreatePartyRegistration....

oadrCreatedPartyRegistration MUST include the following payload elements:

• All supported profiles and transports in the oadrProfiles object
• If the VEN has registered with an HTTP PULL model, then the oadrRe-

questedOadrPollFreqFreq MUST be included in the payload
• Any oadrServiceSpecificInfo or oadrExtensions required to insure in-

teroperability over the profile and transport being utilized

In addition, oadrCreatedPartyRegistration MUST include the following payload
elements, unless the oadrCreatedPartyRegistration is sent as a response to an
oadrQueryRegistration (in which case inclusion of the elements is optional):

• registrationID
• venID

404

VEN/VTN, EiRegisterParty, oadrCreatedPartyRegistration
When responding to an oadrQueryRegistration....

oadrCreatedPartyRegistration MUST include the following payload elements:

• All supported profiles and transports in the oadrProfiles object
• All relevant oadrServiceSpecificInfo or oadrExtensions that may influ-

ence the VENs choice of profile or transport.

oadrCreatedPartyRegistration MUST NOT include the following payload ele-
ments:

• registrationID – If the VEN has not registered with the VTN yet
• venID – If the VEN has not registered with the VTN yet

Note: It is not necessary for the VTN to include the oadrPoll polling information
in the query response, although it may do so.

405 VTN/VEN, EiRegisterParty, oadrCreatePartyRegistration
When a 2.0b VEN boots or is reset, it SHOULD initiate registration (using the

OpenADR 2.0b Profile Specification - 95 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

EiRegisterParty service) before sending any other message to or accepting
any message from a VTN. However, the VEN MAY be registered out-of-band
instead of using EiRegisterParty.

A VTN SHOULD ignore any payload other than oadrQueryRegistration and
oadrCreateRegistration before registration is completed. Similarly, a VEN
SHOULD ignore all payload other than oadrQueryRegistration and oadrCre-
ateRegistration from a VEN that is not yet registered.

After completed registration, VENs and VTNs MUST exchange their Metadata
reports, unless this was a re-registration.

406 VTN/VEN, EiRegisterParty, oadrCreatePartyRegistration

A VEN MAY send an oadrCreatePartyRegistration (without venID and
registrationID) even if it is already registered. If a VTN receives such a new
registration (that is not a requested re-registration), it MUST erase all existing
reporting and registration information and initiate a completely new
registration. It MAY reuse the same venID and registrationID that the VEN had
before this new registration.

407 VTN/VEN, EiRegisterParty, oadrCancelPartyRegistration
If a device receives an oadrCancelPartyRegistration from the other party, it
MUST erase all information about this device, including exchanged Metadata
reports, requested reports, and registration information.

 General Conformance Rules 11.2.6
500

VEN/VTN, oadrPoll
oadrPoll is a service independent polling mechanism used by VENs in a PULL
model to request pending service operations from the VTN. oadrPoll MUST
NOT be used in the VTN to VEN direction. The rules for which payloads are
valid and how those payloads delivered are the same as if the VTN had initiat-
ed the operations and pushed the payloads to the VEN. Only one operation
payload MAY be sent by the VTN in response to the oadrPoll message. When
no additional operational payloads are available, the VTN will respond with an
oadrResponse payload. If the oadrPoll contains an incorrect venID, the VTN
MUST respond with an oadrResponse containing a 452 error code.

If a logical response is required by the VEN to the received operational pay-
load, the VEN MUST send that logical response asynchronously via a transport
request. The VTN should acknowledge this logical response with an oadrRe-
sponse payload.

The VTN MAY optionally ignore an oadrPoll if it has not received an expected
logical response to a payload delivered as a response to a previous poll.

oadrPoll requests MUST be used by a VEN to retrieve messages from the
VTN. The polling interval (i.e., the amount of time between two successive
polls, specified as ISO 8601 duration in oadrRequestedOadrPollFreq)
SHOULD be as requested by the VTN during registration, but MAY be higher
because of processing constraints of the VEN or other factors. The polling in-
terval SHOULD NOT be lower than the requested duration in oadrRe-
questedOadrPollFreq, except when the VEN is emptying the VTN payload.

OpenADR 2.0b Profile Specification - 96 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

Service specific requests SHOULD only be used for re-synchronization where
necessary.

501

VEN/VTN, oadrPoll
All OpenADR B profile VTN implementations as well as simple HTTP VENs
MUST support oadrPoll.

502 VEN/VTN, oadrPoll, EiEvent Service
A VTN whose EiEvent service is polled with oadrPoll typically will only return a
oadrDistributeEvent if a new event is generated or an event state has changed
since the last oadrDistributeEvent was transmitted to the VEN. However, it is
not an error for an VTN to return an oadrDistributeEvent in response to oad-
rPoll with only events that it has previously communicated. It should also be
noted that the oadrDistributeEvent payload MUST contain all active and pend-
ing events, regardless of whether it is polled using oadrPoll or oadrRequestE-
vent. The behavior described above is consistent with existing conformance
rules and is provided here as clarification of expected behavior.

506 VEN/VTN
A VTN that supports the B profile MUST also concurrently support the A pro-
file.

A VEN that supports the B profile MAY also support the A profile. In that case,
the VEN can be configured to communicate with a 2.0a VTN using, e.g., any of
the following options:
 - manual configuration (e.g., as part of setting up the URL of the VTN)
 - automatic fallback (during EiRegisterParty) when receiving any reply from
the VTN using the 2.0a namespace
 - automatic configuration based on the URL of the VTN (which contains "2.0b"
for B VTNs as per conformance rule 511)

507 VEN/VTN, Transport
B profile VTNs MUST support XMPP in addition to the Simple HTTP transport.

B profile VENs MAY support either HTTP or XMPP or both.

B profile VEN and VTNs that implement XMPP MUST support the PUSH mod-
el. XMPP VENs MAY still make requests of the VTN as in the PULL model,
however they MUST NOT use the oadrPoll request.

OpenADR 2.0b Profile Specification - 97 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

508 VEN, venID
All payloads sent by a VEN to a VTN MUST contain a valid venID. This venID
typically appears just below the root payload element, but in a few payloads
(e.g., oadrRequestEvent and oadrCreatedEvent), the venID is one layer deep-
er in the schema. If a payload containing one of these venID elements off the
root is instead sent by the VTN, the venID (if optional) MAY be omitted from
the payload contents.

509

VEN/VTN, Schema Version
The optional schemaVersion attribute MUST be included in all payloads ex-
changed. The value of the schemaVersion attribute MUST be either “2.0a” or
“2.0b” to indicate the version of the OpenADR profile being used.

510 VEN/VTN – Minimum B Profile Feature Support
In order to facilitate interoperability and validation of behavior, the following
features MUST be supported:

1) A VTN MUST be capable of sending the following standard event signals:

• SIMPLE
• ELECTRICTY_PRICE with a signalType of price
• LOAD_DISPATCH with a signalType of setpoint

2) A VEN MUST be capable of producing the following standard report, in addi-
tion to the metadata report, which both VENs and VTNs MUST support:

• TELEMETRY_STATUS report with the mandatory data points of oad-
rOnline and oadrManualOverride for an attached resource identified
with a resourceID target

A VEN MUST be capable of producing TELEMETRY_USAGE reports, at
least for certification (and MAY offer it in deployments). The device MUST be
able to send some telemetry data (i.e., in case it does not have any metering
resources attached, it MUST provide sample data).

A VEN MAY in addition support HISTORY_USAGE reports.

A VEN MUST provide sufficient storage to store recent data, at least 100 da-
ta points. In case the last reading has not been received by the VTN (e.g.,
because of transitory communication problems), recent history can be re-
quested by the VTN from the VEN.

A VTN MUST support report registration (i.e., exchange of Metadata report),
and MAY optionally support additional report types. VTNs are not required to
support periodic reporting of metadata reports if they do not have any reports
to offer. Should a VTN receive a request for a periodic metadata report and
have no reports to offer, it SHOULD respond to the request as if it were a on-
shot request with the reportBackDuration value set to 0.

3) A Report Only VEN MUST be capable of supporting all the Alliance defined
standard reports including:

• TELEMETRY_USAGE
• TELEMETRY_STATUS

OpenADR 2.0b Profile Specification - 98 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

• HISTORY_USAGE

4) A VTN MUST be capable of utilizing the eiTarget sub-elements of venID and
resourceID.

5) A VEN MUST be capable of utilizing the EiOpt service to further qualify the
opt state of an event.

While there is the expectation that fully functional VENs will be able to gener-
ate opt schedules, and fully functional VTNs will be capable of generating
baselines and more than just metadata reports, these capabilities are not ex-
plicitly defined in this rule. If these capabilities can be configured by implemen-
tations, they will be tested.

OpenADR 2.0b Profile Specification - 99 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

511 VTN/VEN

B Profile endpoints MUST use the following template in the simple HTTP
mode, while accepting normalized URIs according to the rules specified in
[RFC3986] (page 40).

• https://<hostname>(:port)/(prefix/)OpenADR2/Simple/2.0b/<service>

With the following strings used for the service name:

• EiEvent
• EiOpt
• EiReport
• EiRegisterParty
• OadrPoll (only on the VTN)

512 VTN/VEN

venID and vtnID MUST be case-sensitive (e.g., a vtnID of “vtnID1” is different
from “vtnid1” when parsing an incoming message).

For marketContext, the normalization rules specified in [RFC3986] (page 40)
MUST be applied, allowing for hostname and scheme (at least) to be case in-
sensitive and still be equivalent.

514 VEN/VTN, XML signatures
Implementations MAY optionally support XML signatures as defined in Section
10.6 of this specification. If a device is configured to use XML Signatures, it
MUST ignore incoming messages that do not contain a valid signature, as de-
fined in Section10.6.

If supported, implementation MUST select from the following list of methods
when creating the XML signature:

canonicalizationMethod:
http://www.w3.org/TR/2001/REC-xml-c14n-20010315

http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments

SignatureMethod:
http://www.w3.org/2001/04/xmldsig-more#rsa-sha256

http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha256

DigestMethod:
http://www.w3.org/2001/04/xmlenc#sha256

The SignatureMethod and DigestMethod selected SHOULD be consistent with
the negotiated TLS cipher and SHOULD be base64 encoded.

Note that a VTN or VEN MAY be configured to support any methods based on

OpenADR 2.0b Profile Specification - 100 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

the needs of a specific deployment. However in the absence of changes to the
default configuration of the VTN or VEN, the behavior of the devices MUST be
as noted above.

A device using XML signatures MUST include a ReplayProtect element as
SignatureProperty (refer to Section 10.6 for an example). The ReplayProtect
element MUST contain the dateTime when the payload is sent to the other
party (not when it is created), as well as a random nonce. A device receiving a
payload in high security mode MUST verify if the ReplayProtect element is part
of the SignatureProperties element and MUST reject the payload if the current
date and time on the device differs from the value in the ReplayProtect more
than a predefined value. In addition, the nonce MAY be used for further
protection against replay attacks.

515 VEN/VTN, XMPP
VEN to VEN communication MUST not be allowed by the XMPP server.

An XMPP client (both VTN and VEN) MUST support XMPP Presence (refer to
section 9.3.4.5). The client MUST implement XMPP Ping and MAY use it in
deployments (refer to section 9.3.4.6).

The VEN MUST only use a single endpoint defined by a single JID.

During authentication to the XMPP server, the Common Name (CN) of the
x.509 certificate MUST match the username of the client.

OpenADR 2.0b Profile Specification - 101 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

 Cardinality 11.3
The OpenADR 2.0 profile utilizes a subset of the OASIS Energy Interoperation 1.0 schema.
However, all root payload elements are in an OpenADR specific namespace, as are some ele-
ments required to add functionality to OpenADR 2.0 that was not supported by Energy Interop. In
some cases, objects from Energy Interoperation could be utilized with changes in cardinality as
is outlined in the Table 6.

Table 6 Cardinalities

Object Element EI OADR 2.0a

EiEventType eventDescriptor:eventStatus 0 – 1 1

EiEventType eventDescriptor:createdDateTime 0 – 1 1

EiEventType eiActivePeriod:properties 0 – 1 1

EiEventType eiActivePeriod:properties/dtstart 0 – many 1

EiEventType eiActivePeriod: properties:duration 0 – many 1

EiEventType eiActivePeriod: properties:tolerance 0 – many 0 – 1

EiEventType eiActivePeriod:properties:x-eiNotification 0 – many 1

EiEventType eiActivePeriod: properties:x-eiRampUp 0 – many 0 – 1

EiEventType eiActivePeriod: properties:x-Recovery 0 – many 0 – 1

EiEventType eiEventSignals:eiEventSignal 0 – many 1 – many

EiEventType eiEventSignals:eiEventSignal:intervals 0 – 1 1

EiEventType eiEventSignals:eiEventSignal:currentValue 0 – 1 1 – A profile

EiEventType eiEventSignals:eiEventSignal:intervals:interval 0 – many 1 – many

EiEventType eiEventSig-
nals:eiEventSignal:intervals:signalInterval:duratio
n

0 – many 1

EiEventType eiEventSig-
nals:eiEventSignal:intervals:signalInterval/uid

0 – many 1

EiEventType eiTarget 0 – 1 1

 Services used from OASIS Energy Interoperation V1.0 Standard 11.4
The OpenADR 2.0 A and B Profile Specifications use a number of services defined and required
by the OASIS Energy Interoperation standard. The following services are currently supported:

- EiEvent

- EiOpt (not in OpenADR 2.0a)

OpenADR 2.0b Profile Specification - 102 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

- EiReport (not in OpenADR 2.0a)

- EiRegisterParty (not in OpenADR 2.0a)

 Services not currently used from OASIS EI 11.5
The OpenADR 2.0 A and B Profile Specification do not use the following services included in the
OASIS Energy Interoperation OpenADR profile:

- EiQuote

- EiEnroll

- EiAvail

- EiMarketContext

OpenADR 2.0b Profile Specification - 103 -

Annex A – Detailed Report Description

GENERAL'DESCRIPTION METADATA REPORT METADATA REPORT METADATA REPORT METADATA REPORT

xcal:dtstart NA NA
start%date/time%of%
data%(optional) NA

start%date/time%of%
data%(optional) NA

start%date/time%of%data%
(optional) NA

start%date/time%of%
data%(optional)

xcal:duration

This'is'the'amount'of'data'history'that'may'be'reported'
expressed'as'a'duration'of'time.'For'entities'that'sample'data'at'
some'maximum'frequency'this'is'the'amount'of''data'that'can'be'

stored'at'that'frequency. amount%of%history
duration%of%entire%
report%(optional) amount%of%history

duration%of%entire%
report%(optional) amount%of%history

duration%of%entire%report%
(optional) amount%of%history

duration%of%entire%
report%(optional)

xcal:dtstart Start'date/time'of'the'interval NA date/time NA NA NA date/time NA date/time

xcal:duration

duration'of'the'interval.'If'ommitted'then'the'datapoint'in'this'
interval'is'for'a'specific'period'of'time'and'does'not'span'an'

interval'of'time. NA interval%duration NA NA NA interval%duration NA NA
xcal:uid sequence'number'of'this'interval'starting'at'0 NA Y NA NA NA Y NA Y

ei:rid Identifier'of'the'data'point. NA Meter%ID NA NA NA Meter%ID NA Device%ID
ei:confidence How'much'confidence'there'is'in'the'value'(0'N1) NA (optional) NA NA NA (optional) NA (optional)
ei:accuracy Accuracy'of'the'data NA (optional) NA NA NA (optional) NA (optional)
ei:dataQuality Text'describing'data'quality NA (optional) NA NA NA (optional) NA (optional)
payloadFloat Actual'value'of'the'datapoint NA Usage%Value NA NA NA Usage%Value NA NA

if'TRUE'the'resource'is'on'line. NA NA NA NA NA NA NA TRUE%if%online

oadrManualOverride
if'TRUE'the'control'or'state'of'the'resource'was'manually'

overridden. NA NA NA NA NA NA NA TRUE'if'override
oadrMin NA NA NA NA NA NA NA optional
oadrMax NA NA NA NA NA NA NA optional
oadrCurrent NA NA NA NA NA NA NA optional
oadrNormal NA NA NA NA NA NA NA optional
oadrMin NA NA NA NA NA NA NA optional
oadrMax NA NA NA NA NA NA NA optional
oadrCurrent NA NA NA NA NA NA NA optional
oadrNormal NA NA NA NA NA NA NA optional
oadrMin NA NA NA NA NA NA NA optional
oadrMax NA NA NA NA NA NA NA optional
oadrCurrent NA NA NA NA NA NA NA optional
oadrNormal NA NA NA NA NA NA NA optional
oadrMin NA NA NA NA NA NA NA optional
oadrMax NA NA NA NA NA NA NA optional
oadrCurrent NA NA NA NA NA NA NA optional
oadrNormal NA NA NA NA NA NA NA optional

oadrGBPayload atom:feed Payload'according'to'the'Green'Button'specification NA NA NA Y NA NA NA NA
ei:eiReportID Identifier'for'this'particular'instance'of'the'report my%report%ID my%report%ID my%report%ID my%report%ID my%report%ID my%report%ID my%report%ID my%report%ID

ei:rID

This'is'the'identifier'for'each'datapoint'in'the'report.''Each'
datapoint'has'its'own'set'of'oadrReportDescription'attributes'
which'are'used'to'describe'the'datapoint'.'When'the'report'is'

requested'the'requesting'party'may'specify'which'set'of'
datapoints'it'wants'in'the'requested'report.

'RULE:'rID's'must'be'unique'within'a'specific'reportSpecifierID. Meter%ID NA Meter%ID NA Meter%ID NA End%Device%or%Data%ID NA
ei:reportSubject'
(endDeviceAsset'ONLY) ei:eiTargetType

This'is'used'to'specify'device'classes'using'the'endDeviceAsset'
attribute'(optional) NA NA NA NA NA NA

Device%class%if%
applicable NA

ei:reportDataSource
(ONE'OF) ei:eiTargetType

This'is'the'actual'source'of'the'data'and'allows'for'the'normal'
target'types.'(optional) resourceID NA resourceID NA resourceID NA resourceID NA

ei:reportType
This'is'the'type'of'information'in'the'report.'See'
ReportEumeratedType'for'a'list'of'legal'values. usage NA usage NA usage NA usage NA

current NA NA NA NA NA NA NA NA
energyApparent NA NA NA NA NA NA NA NA
energyReactive NA NA NA NA NA NA NA NA
energyReal NA NA NA NA NA NA NA NA
powerApparent Y NA NA NA Y NA Y NA
powerReactive Y NA NA NA Y NA Y NA
powerReal Y NA NA NA Y NA Y NA
voltage NA NA NA NA NA NA NA NA
oadrGBDataDescrip
tion

atom:feed Green'Button'specific'description'according'to'the'Green'Button'
specification. NA NA Y NA NA NA NA NA

currency NA NA NA NA NA NA NA NA

ei:readingType
This'is'the'way'in'which'the'values'in'the'report'are'determined.'

See'eiReadingTypeType'for'an'enumeration'of'values. Direct+Read NA Direct+Read NA Direct+Read NA x/notApplicable NA

emix:marketContext This'is'the'program'that'this'report'applies'to.'(optional) DR%program%(optional) NA DR%program%(optional) NA
DR%program%
(optional) NA

DR%program%
(optional) NA

oadrMinPeriod Minimum'sampling'period min%period NA min%period NA min%period NA min%period NA
oadrMaxPeriod Maximum'sampling'period max%period NA max%period NA max%period NA max%period NA

oadrOnChange Flag'to'sample'on'value'change NA NA NA NA NA NA
set%to%TRUE%if%can%
send%on%change NA

ei:reportRequestID

This'is'normally'the'ID'used'when'this'report'was'requested.
''''This'field'should'be'set'to'0'in'the'case'where'a'METADATA'

report'is'not'requested. 0%or%request%ID request%ID 0%or%request%ID request%ID 0%or%request%ID request%ID 0%or%request%ID request%ID

ei:specifierID

This'is'an'indentifier'generated'by'the'entity'that'created'this'
METADATA'report'and'used'to'refer'to'this'specification'in'future'

report'requests

specifier%ID
(used%by%future%report%

requests) specifier'ID

specifier%ID
(used%by%future%report%

requests) specifier'ID

specifier%ID
(used%by%future%
report%requests) specifier'ID

specifier%ID
(used%by%future%report%

requests) specifier'ID

ei:reportName
This'is'the'name'of'the'OADR'report'profile'represented'in'this'

artifact.
METADATA_HISTORY_

USAGE HISTORY_USAGE
METADATA_HISTORY_

GREENBUTTON
HISTORY_GREENBUTT

ON
METADATA_TELEME

TRY_USAGE TELEMETRY_USAGE
METADATA_TELEME

TRY_STATUS TELEMETRY_STATUS
ei:createdDateTime DateNtime'this'artifact'is'created. current%Date/Time current%Date/Time current%Date/Time current%Date/Time current%Date/Time current%Date/Time current%Date/Time current%Date/Time

TELEMETRY_STATUSTELEMETRY_USAGE
TELEMETRY

DATA'REPORTS

oadrCapacity

These'correspond'to'the'LOAD_CONTROL'signals.'Each'one'has'
the'following'attributes:

N'oadrMin'N'the'minimum'possible'value
N'oadrMax'N'the'maximum'possible'value

N'oadrCurrent'N'the'current'value
N'oadrNormal'N'the'normal'operating'value

oadrOnline

HISTORY_USAGE
HISTORY

oadrLevelOffset

oadrPercentOff
set

oadrSetPoint

HISTORY
GREEN'BUTTON

These'are'the'units'for'the'data'in'the'report'.

oadrSamplingRate

oadrPayloadResource
Status

emix:itemBase
(ONE'OF)

oadr:oadrReportDescri
ption
(There'is'one'of'these'
elements'for'each'data'
item,'e.g.'data'point,''
in'the'report)

reportPayload

strm:intervals

ei:interval
There'is'one'of'these'
elements'for'each'
datapoint'value'in'the'
report.

DRAFT -- OpenADR 2.0b Profile Specification- 104 -

Annex B B Profile Extensions

B.1 Overview

The B profile schema provides a number of ways in which various enumerated values and stand-
ardized sets of values (signal and reports) can be extended without the need to modify the
schema. However, utilizing the extension mechanisms may cause interoperability issues between
VEN and VTNs unless both are aware of the extensions. In general, the extensions rely on a
schema type called EiExtensionTokenType, which allows enumerated values to be extended with
a “x-” prefix without causing schema validation errors.

B.2 Report Extension

The OpenADR Alliance has defined a number of standardized reports that are intended to meet
most needs. If necessary, custom reports can be added by creating a new reportName prefixed
with “x-”. Existing reportType, units (itemBase), and readingType values can be utilized to con-
struct the new report. Custom reportType and readingType's may also be defined if necessary by
prefixing the new values with “x-”.

Units are defined as part of the itemBase substitution group and could in theory be extend
through a private namespace. However, this would create a high probability of interoperability
problems as not all XML serialization mechanisms may be able to deal with unknown substitution
group items. We would strongly advise against extending units.

The OpenADR Alliance plans to set up a registry for custom report names and their characteris-
tics. Reports placed into the registry will be reviewed each time the OpenADR Profiles are up-
dated and the Alliance will roll custom reports deemed of general interest into the standard set of
OpenADR Report Profiles. Please check the OpenADR Alliance web site for more information on
report registration.

B.3 Signal Extensions

The OpenADR Alliance has defined a number of standardized signals that are intended to meet
most needs. If necessary, custom signals can be added by creating a new signalName prefixed
with “x-”. Existing signalType and units (itemBase) values can be utilized to construct the new
signal. Custom signalType can be defined if necessary by prefixing the new value with “x-”.

The same concerns exist as noted in the Report Extension section above with regards to extend-
ing Units through private namespace substitution and it is not advised.

There are no plans at this time to provide a registry for custom signal names.

B.4 Other Extensions

Other enumerated schema elements that can be extended via the “x-” prefix mechanism include
optReason, responseCode, oadrDataQuality, schemaVersion, and device classes defined in the
endDeviceAsset element contained in the EiEvent, EiOpt, and EiReport schemas.

The VTN may also support additional extension mechanisms that can be communicated to the
VEN using the oadrCreatedRegistration:oadrExtensions object. How these extensions are im-
plemented and what functionality they may provide are outside the scope of this specification.
However, great caution should be exercised in the implementation of any extension to insure in-
teroperability with the large ecosystem of VEN implementations.

OpenADR 2.0b Profile Specification - 105 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

Annex C – oadrPoll Scenarios

C.1 Overview

The current conformance rules allow different scenarios when a VTN has multiple payloads in its
queue and it receives oadrPoll from the VEN. This annex exemplifies several scenarios that are
in accordance with this specification and thus have to be supported by implementations.

C.2 Scenarios

Scenario 1:

1. VEN sends oadrPoll

2. VTN responds with application layer request (oadrCreateReport)

3. VEN sends application layer response (oadrCreatedReport)

4. VTN responds with acknowledgement (oadrResponse)

5. VEN sends another oadrPoll

6. VTN responds with next item in the queue

It is assumed that this would be the typical behavior.

Scenario 2:

1. VEN sends oadrPoll

2. VTN responds with application layer request (oadrCreateReport)

3. VEN sends another oadrPoll

4. VTN ignores the oadrPoll and does not respond

5. VEN sends application layer response (oadrCreatedReport)

6. VTN responds with acknowledgement (oadrResponse)

7. VEN sends another oadrPoll

8. VTN responds with next item in the queue

The conformance rules allow the VTN to optionally ignore oadrPoll if a pending application layer
response is expected

Scenario 3:

1. VEN sends oadrPoll

2. VTN responds with application layer request (oadrCreateReport)

OpenADR 2.0b Profile Specification - 106 -

Copyright © OpenADR Alliance (2013). All Rights Reserved.

3. VEN sends another oadrPoll

4. VTN responds with application layer request (oadrDistributeEvent)

5. VEN sends application layer response (oadrCreatedReport)

6. VTN responds with acknowledgement (oadrResponse)

7. VEN sends application layer response (oadrCreatedEvent)

8. VTN responds with acknowledgement (oadrResponse)

9. VEN sends another oadrPoll

10. VTN responds with next item in the queue

VEN implementations will likely behave like scenario 1 (although the other scenarios are also
valid): the VEN will not poll again until being provided an application layer response to the most
recent payload from the VTN.

However, the VTN must also support scenario such as the example in scenario 3: providing any
message in the queue to the VEN if it asks for it regardless of any pending responses.

